Post

Subarray

Subarray

Definition

1
a[i], a[i + 1], ..., a[j]

Where 0 <= i <= j <= a.length

Algorithm

Minimum Moves to Make Array Complementary

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public int minMoves(int[] nums, int limit) {
    // delta array
    // let target T = nums[i] + nums[n - 1 - i]
    // changing T from (i - 1) to i takes p[i] more operations
    // 2 <= T <= 2 * limit
    int[] p = new int[2 * limit + 2];

    //       2          1     0      1             2
    // |----------|-----------|------------|----------------|
    // 2   min(a, b) + 1    a + b   max(a, b) + limit   2 * limit
    //
    int n = nums.length;
    for (int i = 0; i < n / 2; i++) {
        int a = nums[i], b = nums[n - 1 - i];
        p[2] += 2;  // [2, min(a,b)]
        p[Math.min(a, b) + 1]--;  // (min(a, b), a + b)
        p[a + b]--;
        p[a + b + 1]++;  // (a + b, max(a, b) + limit]
        p[Math.max(a, b) + limit + 1]++;  // (max(a, b) + limit, 2 * limit]
    }

    int move = 2 * n, sum = 0;
    for (int i = 2; i <= 2 * limit; i++) {
        sum += p[i];
        move = Math.min(move, sum);
    }
    return move;
}

Minimum Number of Increments on Subarrays to Form a Target Array

Credit to @coder206

e.g. [3,1,5,4,2]

Wall bricks

1
2
3
4
5
6
7
8
public int minNumberOperations(int[] target) {
    // count of exposed left edges
    int count = target[0];
    for (int i = 1; i < target.length; i++) {
        count += Math.max(target[i] - target[i - 1], 0);
    }
    return count;
}

Two Pointers

Shortest Unsorted Continuous Subarray

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public int findUnsortedSubarray(int[] nums) {
    int n = nums.length, start = -1, end = -2, min = nums[n - 1], max = nums[0];
    for (int i = 1; i < n; i++) {
        max = Math.max(max, nums[i]);
        min = Math.min(min, nums[n - 1 - i]);

        // `end` is the rightmost index of an element which < the max of all the elements on its left
        if (nums[i] < max) {
            end = i;
        }

        // `start` is the leftmost index of an element which > the min of all the elements on its right
        if (nums[n - 1 - i] > min) {
            start = n - 1 - i;
        }

        // from the definitions of `start` and `end`:
        // - all elements on the right of `end` > the max of all the elements on its left
        // - all elements on the left of `start` < the min of all the elements on its right
        // so these two parts are good
        //
        // `start` and `end` are not sorted by defintion, so the subarray bounds are tight
    }
    return end - start + 1;
}

Dynamic Programming

Find Two Non-overlapping Sub-arrays Each With Target Sum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
private static final int MAX = (int)1e5 + 1;

public int minSumOfLengths(int[] arr, int target) {
    int n = arr.length;

    // dp[k]: minimum length of subarray arr[i...j]
    // - sum(arr[i...j]) == target
    // - 0 <= i <= j <= k
    int[] dp = new int[n];

    int i = 0, j = 0, sum = 0, result = MAX;
    int minLen = MAX;     // min length of required subarrays so far
    while (j < n) {
        // sliding window
        // based on the fact that all integers are positive
        // and target > 0
        sum += arr[j];
        while (sum > target) {
            sum -= arr[i++];
        }

        if (sum == target) {
            int currLen = j - i + 1;    // length of the current required subarray
            minLen = Math.min(minLen, currLen);

            if (i > 0 && dp[i - 1] > 0) {
                result = Math.min(result, dp[i - 1] + currLen);
            }
        }
        dp[j++] = minLen;
    }

    return result == MAX ? -1 : result;
}

Generalization: k non-overlapping subarrays

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
private static final int MAX = (int)1e5 + 1;
private Map<Integer, Integer> map = new HashMap<>();

public int minSumOfLengths(int[] arr, int target) {
    return minSumOfLengths(arr, target, 2);
}

// k non-overlapping sub-arrays
private int minSumOfLengths(int[] arr, int target, int k) {
    int n = arr.length;

    // dp[t][m]: minimum sum of the lengths of m non-overlapping sub-arrays arr[i...j]
    // - sum(arr[i...j]) == target
    // - 0 <= i <= j < t
    int[][] dp = new int[n + 1][k + 1];  //if asking for n subarrays, change 3 to n+1

    map.put(0, 0);

    // initialization
    Arrays.fill(dp[0], MAX);

    // length of 0 subarrays is 0
    for (int i = 0; i <= n; i++) {
        dp[i][0] = 0;
    }

    int sum = 0;
    for (int i = 1; i <= n; i++) {
        sum += arr[i - 1];
        map.put(sum, i);

        // arr[d + 1 ... i] == target
        int d = map.getOrDefault(sum - target, -1);

        for (int j = 1; j <= k; j++) {
            dp[i][j] = dp[i - 1][j];
            if (d >= 0) {
                // len(arr[d + 1 ... i]) == i - d
                dp[i][j] = Math.min(dp[i][j], dp[d][j - 1] + i - d);
            }
        }
    }

    return dp[n][k] == MAX ? -1 : dp[n][k];
}

Maximum Sum of 3 Non-Overlapping Subarrays

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
    int n = nums.length;
    int[] p = new int[n + 1];
    for (int i = 0; i < n; i++) {
        p[i + 1] = p[i] + nums[i];
    }

    int[] left = new int[n], right = new int[n];
    // starting position in left
    // left[k] = 0
    for (int i = k, max = p[k] - p[0]; i < n; i++) {
        int start = i + 1 - k, sum = p[i + 1] - p[start];
        // strict >
        // because the result is the lexicographically smallest one
        if (sum > max) {
            left[i] = start;
            max = sum;
        } else {
            left[i] = left[i - 1];
        }
    }

    // starting position in right
    right[n - k] = n - k;
    for (int i = n - k - 1, max = p[n] - p[n - k]; i >= 0; i--) {
        int start = i, sum = p[i + k] - p[start];
        // non-strict >=
        // because the result is the lexicographically smallest one
        if (sum >= max) {
            right[i] = start;
            max = sum;
        } else {
            right[i] = right[i + 1];
        }
    }

    int[] result = new int[3];
    int max = 0;
    // iterates all middle intervals
    for (int i = k; i <= n - 2 * k; i++) {
        int l = left[i - 1], r = right[i + k];
        int sum = (p[i + k] - p[i]) + (p[l + k] - p[l]) + (p[r + k] - p[r]);
        if (sum > max) {
            max = sum;
            result[0] = l;
            result[1] = i;
            result[2] = r;
        }
    }
    return result;
}

Arithmetic Slices

1
2
3
4
5
6
7
8
9
10
11
12
public int numberOfnumsrithmeticSlices(int[] nums) {
    int n = nums.length;
    int[] dp = new int[n];
    int count = 0;
    for (int i = 2; i < n; i++) {
        if (nums[i] - nums[i - 1] == nums[i - 1] - nums[i - 2]) {
            dp[i] = dp[i - 1] + 1;
            count += dp[i];
        }
    }
    return count;
}

Reduced to 0D:

1
2
3
4
5
6
7
8
9
10
11
12
public int numberOfArithmeticSlices(int[] nums) {
    int dp = 0, count = 0;
    for (int i = 2; i < nums.length; i++) {
        if (nums[i] - nums[i - 1] == nums[i - 1] - nums[i - 2]) {
            dp++;
            count += dp;
        } else {
            dp = 0;
        }
    }
    return count;
}
This post is licensed under CC BY 4.0 by the author.