Shortest Path
Dijkstra
Fundamentals
Dijkstra’s Shortest Path First algorithm (SPF algorithm) is an algorithm for finding the shortest paths between nodes in a graph. A single node as the “source” node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree.
The weights of the graph must be non-negative.
Pseuodo-code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
function Dijkstra(Graph, source):
dist[source] ← 0 // Initialization
create vertex priority queue Q
for each vertex v in Graph.Vertices:
if v ≠ source
dist[v] ← INFINITY // Unknown distance from source to v
prev[v] ← UNDEFINED // Predecessor of v
Q.add_with_priority(v, dist[v])
while Q is not empty: // The main loop
u ← Q.extract_min() // Remove and return best vertex
for each neighbor v of u: // only v that are still in Q
alt ← dist[u] + Graph.Edges(u, v)
if alt < dist[v]
dist[v] ← alt
prev[v] ← u
Q.decrease_priority(v, alt)
return dist, prev
Note it’s very important that in each iteration, we handles only neighbor vertices that are still in the queue.
If we are only interested in a shortest path between vertices source and target, we can terminate the search if u == target
.
Indexed priority queue, Fibonacci heap or Brodal queue offer optimal implementations for the above 3 min-priority queque operations.
Time complexity: $$ \Theta( | V | + | E | \log{ | V | }) $$ |
Dijkstra’s algorithm has some similarities with BFS:
BFS | Dijkstra | |
---|---|---|
graph | unweighted | weighted (non-negative) |
queue | queue | priority queue |
time complexity | O(V + E) | O(V + Elog(V)) |
A common implementation with simple priority queue is as below:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
* Dijkstra's algorithm.
* @param n number of vertices. Vertices range from 0 to (n - 1)
* @param graph graph[i][j] is the edge from vertex i to j
* @param src source node
*/
public void dijkstra(int n, List<int[]>[] graph, int src) {
// dist[i]: distance from src to vertex i
// initializes all elements in the array to inf
int[] dist = new int[n];
Arrays.fill(dist, Integer.MAX_VALUE);
// {vertex, dist[vertex] when enqueued}
Queue<int[]> q = new PriorityQueue<>((a, b) -> a[1] - b[1]);
// initializes the queue to contain source only
int[] curr = {src, dist[src] = 0};
q.offer(curr);
while (!q.isEmpty()) {
// dequeues the best vertex
curr = q.poll();
int u = curr[0], du = curr[1];
// skips current if the vertex is visited
// (and hence already has a shorter distance)
if (du > dist[u]) {
continue;
}
// checks all neighbors in the graph whether they are still in the queue or not
// then a vertex can be re-enqueued and thus its time complexity is more
// compared to traditional Dijkstra (Fibonacci queue version)
for (int[] next : graph[u]) {
int v = next[0], duv = next[1];
int alt = du + duv;
if (alt < dist[v]) {
q.offer(new int[]{v, dist[v] = alt});
}
}
}
}
See Minimum Weighted Subgraph With the Required Paths, Number of Ways to Arrive at Destination as examples.
Time Complexity: $$ \Theta(( | V | + | E | )\log{ | V | }) $$ |
To skip visited vertices, we can use an array or set to mark them. See reachable-nodes-in-subdivided-graph.
Examples
This section demos how to apply Dijkstra’s algorithm to solve problems, along with some other steps (e.g. DFS).
Minimum Weighted Subgraph With the Required Paths
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
public long minimumWeight(int n, int[][] edges, int src1, int src2, int dest) {
List<long[]>[] graph = new List[n], reverse = new List[n];
for (int i = 0; i < n; i++) {
graph[i] = new ArrayList<>();
reverse[i] = new ArrayList<>();
}
for (int[] e : edges) {
graph[e[0]].add(new long[]{e[1], e[2]});
reverse[e[1]].add(new long[]{e[0], e[2]});
}
long[] weight1 = new long[n], weight2 = new long[n], weightDest = new long[n];
Arrays.fill(weight1, Long.MAX_VALUE);
Arrays.fill(weight2, Long.MAX_VALUE);
Arrays.fill(weightDest, Long.MAX_VALUE);
// 3 Dijkstra's
dijkstra(graph, src1, weight1);
dijkstra(graph, src2, weight2);
dijkstra(reverse, dest, weightDest);
// finds min weight
long min = Long.MAX_VALUE;
for (int i = 0; i < n; i++) {
if (weight1[i] < Long.MAX_VALUE &&
weight2[i] < Long.MAX_VALUE &&
weightDest[i] < Long.MAX_VALUE) {
min = Math.min(min, weight1[i] + weight2[i] + weightDest[i]);
}
}
return min == Long.MAX_VALUE ? -1 : min;
}
private void dijkstra(List<long[]>[] graph, int src, long[] weight) {
Queue<long[]> pq = new PriorityQueue<>(Comparator.comparingLong(a -> a[1]));
long[] curr = {src, weight[src] = 0};
pq.offer(curr);
while (!pq.isEmpty()) {
curr = pq.poll();
int node = (int)curr[0];
long w = curr[1];
if (weight[node] < w || graph[node].isEmpty()) {
continue;
}
for (var e : graph[node]) {
int neighbor = (int)e[0];
long neighborW = e[1];
if (weight[neighbor] > weight[node] + neighborW) {
pq.offer(new long[]{neighbor, weight[neighbor] = weight[node] + neighborW});
}
}
}
}
Number of Restricted Paths From First to Last Node
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
private static final int MOD = (int)1e9 + 7;
private List<int[]>[] graph;
private int[] dist, memo;
private int n;
public int countRestrictedPaths(int n, int[][] edges) {
this.n = n;
this.graph = new List[n + 1];
for (int i = 1; i <= n; i++) {
graph[i] = new ArrayList<>();
}
// u : {v, weight}
for (int[] e : edges) {
graph[e[0]].add(new int[]{e[1], e[2]});
graph[e[1]].add(new int[]{e[0], e[2]});
}
this.dist = new int[n + 1];
Arrays.fill(dist, Integer.MAX_VALUE);
Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[1]));
int[] curr = new int[]{n, dist[n] = 0};
pq.offer(curr);
while (!pq.isEmpty()) {
curr = pq.poll();
int node = curr[0], d = curr[1];
if (dist[curr] < d) {
continue;
}
for (int[] next : graph[curr]) {
int neighbor = next[0], e = next[1];
int alt = dist[curr] + e;
if (alt < dist[neighbor]) {
pq.offer(new int[]{neighbor, dist[neighbor] = alt});
}
}
}
this.memo = new int[n + 1];
Arrays.fill(memo, -1);
return dfs(1);
}
private int dfs(int node) {
if (node == n) {
return 1;
}
if (memo[node] >= 0) {
return memo[node];
}
int count = 0;
for (var e : graph[node]) {
int neighbor = e[0];
// on a restricted path, dist is monotonically decreasing
// so there's no cycle
if (dist[neighbor] < dist[node]) {
count = (count + dfs(neighbor)) % MOD;
}
}
return memo[node] = count;
}
Minimum Obstacle Removal to Reach Corner
Model the grid as a graph where cells are nodes and edges are between adjacent cells. Edges to cells with obstacles have a cost of 1 and all other edges have a cost of 0.
Cost function
Cost function is monotonically increasing/decreasing. The traditional cost function is summation of non-negative weights. The following are cost function variations:
Multiplication of probabilities
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
public double maxProbability(int n, int[][] edges, double[] succProb, int start, int end) {
List<int[]>[] graph = new List[n];
for (int i = 0; i < n; i++) {
graph[i] = new ArrayList<>();
}
for (int i = 0; i < edges.length; i++) {
int[] e = edges[i];
graph[e[0]].add(new int[]{e[1], i});
graph[e[1]].add(new int[]{e[0], i});
}
// Dijkstra
double[] p = new double[n];
// max heap
Queue<Pair<Integer, Double>> pq = new PriorityQueue<>(Comparator.comparingDouble(a -> -a.getValue()));
Pair<Integer, Double> curr = new Pair<>(start, p[start] = 1);
pq.offer(curr);
while (!pq.isEmpty()) {
curr = pq.poll();
int u = curr.getKey();
double pu = curr.getValue();
if (u == end) {
break;
}
if (pu < p[u]) {
continue;
}
for (int[] next : graph[u]) {
int neighbor = next[0], index = next[1];
double alt = p[u] * succProb[index];
if (alt > p[neighbor]) {
pq.offer(new Pair<>(neighbor, p[neighbor] = alt));
}
}
}
return p[end];
}
Summation of absolute difference
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
public int minimumEffortPath(int[][] heights) {
int m = heights.length, n = heights[0].length;
int[][] dist = new int[m][n];
for (int i = 0; i < m; i++) {
Arrays.fill(dist[i], Integer.MAX_VALUE);
}
// {i, j, effort}
Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[2]));
int[] curr = new int[]{0, 0, 0};
pq.offer(curr);
while (!pq.isEmpty()) {
curr = pq.poll();
int i = curr[0], j = curr[1], e = curr[2];
if (i == m - 1 && j == n - 1) {
return e;
}
if (e > dist[i][j]) {
continue;
}
for (int[] d : DIRECTIONS) {
int r = i + d[0], c = j + d[1];
if (r >= 0 && r < m && c >= 0 && c < n) {
int alt = Math.max(Math.abs(heights[r][c] - heights[i][j]), e);
if (alt < dist[r][c]) {
pq.offer(new int[]{r, c, dist[r][c] = alt});
}
}
}
}
return -1;
}
Summation of Manhattan distances
Maximum of heights
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
public int trapRainWater(int[][] heightMap) {
int m = heightMap.length, n = heightMap[0].length;
// virtual start representing the outside world
int start = m * n;
// {row * n + col, weight}
// the path direction is from i to graph[i]
List<int[]>[] graph = new List[m * n + 1];
for (int i = 0; i < graph.length; i++) {
graph[i] = new ArrayList<>();
}
int[] dist = new int[graph.length];
Arrays.fill(dist, Integer.MAX_VALUE / 2);
dist[start] = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
// border cells
if (i == 0 || i == m - 1 || j == 0 || j == n - 1) {
graph[start].add(new int[]{i * n + j, 0});
}
for (int[] d : DIRECTIONS) {
int r = i + d[0], c = j + d[1];
if (r >= 0 && r < m && c >= 0 && c < n) {
graph[i * n + j].add(new int[]{r * n + c, heightMap[i][j]});
}
}
}
}
// for each unit cell, finds the min of all paths' weight
// where a path's weight is defined as the highest height value along the path
Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(c -> c[1]));
int[] curr = new int[]{start, 0};
pq.offer(curr);
while (!pq.isEmpty()) {
curr = pq.poll();
int u = curr[0], du = curr[1];
if (du > dist[u]) {
continue;
}
for (int[] next : graph[u]) {
int v = next[0], duv = next[1];
int alt = Math.max(du, duv);
if (alt < dist[v]) {
pq.offer(new int[]{v, dist[v] = alt});
}
}
}
int volume = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
volume += Math.max(0, dist[i * n + j] - heightMap[i][j]);
}
}
return volume;
}
This problem can be solved by BFS as well. We can see the intrinsic connection of the two approaches.
Additional Wait
Minimum Time to Visit a Cell In a Grid
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
public int minimumTime(int[][] grid) {
// it's the only condition when the bottom-right cell cannot be visited
// because at time > 0, you can always go back and forth between previous and current cell
// until the time is long enough to move on
if (grid[0][1] > 1 && grid[1][0] > 1) {
return -1;
}
int m = grid.length, n = grid[0].length;
int[][] dist = new int[m][n];
for (int[] row : dist) {
Arrays.fill(row, Integer.MAX_VALUE);
}
// {row, col, time}
Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[2]));
pq.offer(new int[]{0, 0, dist[0][0] = 0});
while (!pq.isEmpty()) {
int[] cell = pq.poll();
int row = cell[0], col = cell[1], time = cell[2];
if (row == m - 1 && col == n - 1) {
return time;
}
if (time > dist[row][col]) {
continue;
}
for (int[] d : DIRECTIONS) {
int r = row + d[0], c = col + d[1];
if (r >= 0 && r < m && c >= 0 && c < n) {
// if the neighbor cell has value > time + 1
// back-and-forth between previous and currnt cell to let time pass
// case 1
// (grid[r][c] - time) is even
// e.g. neighbor = 3, time = 1
// then, 2 @ curr, 3 @ prev, 4 @ neighbor
// case 2
// (grid[r][c] - time) is odd
// e.g. neighbor = 4, time = 1
// then, 2 @ curr, 3 @ prev, 4 @ neighbor
int wait = ((grid[r][c] - time) % 2) ^ 1;
int alt = Math.max(grid[r][c] + wait, time + 1);
if (alt < dist[r][c]) {
pq.offer(new int[]{r, c, dist[r][c] = alt});
}
}
}
}
return -1;
}
Composite Vertex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
private static final char[] INSTRUCTIONS = {'d', 'r', 'u', 'l'};
class Point implements Comparable<Point> {
int row, col, distance;
String instruction;
Point(int row, int col, int distance, String instruction) {
this.row = row;
this.col = col;
this.distance = distance;
this.instruction = instruction;
}
@Override
public int compareTo(Point o) {
return this.distance == o.distance ? this.instruction.compareTo(o.instruction) : this.distance - o.distance;
}
}
public String findShortestWay(int[][] maze, int[] ball, int[] hole) {
int m = maze.length, n = maze[0].length;
boolean[][] visited = new boolean[m][n];
Queue<Point> pq = new PriorityQueue<>();
Point p = new Point(ball[0], ball[1], 0, "");
pq.offer(p);
while (!pq.isEmpty()) {
p = pq.poll();
if (p.row == hole[0] && p.col == hole[1]) {
return p.instruction;
}
visited[p.row][p.col] = true;
for (int i = 0; i < DIRECTIONS.length; i++) {
int[] d = DIRECTIONS[i];
int r = p.row + d[0], c = p.col + d[1];
int distance = p.distance;
// keeps rolling until hitting a wall or the hole
while (r >= 0 && r < m && c >= 0 && c < n && maze[r][c] == 0) {
distance++;
if (r == hole[0] && c == hole[1]) {
r += d[0];
c += d[1];
break;
}
r += d[0];
c += d[1];
}
r -= d[0];
c -= d[1];
if (!visited[r][c]) {
pq.offer(new Point(r, c, distance, p.instruction + INSTRUCTIONS[i]));
}
}
}
return "impossible";
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public int assignBikes(int[][] workers, int[][] bikes) {
// {worker, bike mask, distance}
Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[2]));
pq.offer(new int[]{0, 0, 0});
Set<String> visited = new HashSet<>();
while (!pq.isEmpty()) {
int[] node = pq.poll();
int worker = node[0], mask = node[1], d = node[2];
if (visited.add(worker + "#" + mask)) {
if (worker == workers.length) {
return d;
}
for (int i = 0; i < bikes.length; i++) {
// i-th bike is available
if ((mask & (1 << i)) == 0) {
pq.offer(new int[]{worker + 1, mask | (1 << i), d + distance(workers[worker], bikes[i])});
}
}
}
}
return -1;
}
private int distance(int[] p1, int[] p2) {
return Math.abs(p1[0] - p2[0]) + Math.abs(p1[1] - p2[1]);
}
In this problem, each vertex is composite, i.e. a state that combines multiple variables. Specifically, vertices are constructed layer by layer from workers[0]
to workers[n - 1]
, and in the i-th layer, a vertex stands for a certain assignment of bikes to workers[0...i]
. This solution is very similar to BFS - the only difference is we use a priority queue to find the min dist quickly in each layer.
More Than One Shortest Path
If there are multiple shortest paths from source
to target
, we can track the count with another auxiliary array. See the following problem:
Number of Ways to Arrive at Destination
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
private static final int MOD = (int)1e9 + 7;
public int countPaths(int n, int[][] roads) {
List<int[]>[] graph = new List[n];
for (int i = 0; i < n; i++) {
graph[i] = new ArrayList<>();
}
for (int[] r : roads) {
graph[r[0]].add(new int[]{r[1], r[2]});
graph[r[1]].add(new int[]{r[0], r[2]});
}
// time[i]: shortest amount of time from 0 to i so far
int[] time = new int[n], ways = new int[n];
Arrays.fill(time, Integer.MAX_VALUE);
// {city, time from 0 to city at the time of enqueue}
Queue<int[]> pq = new PriorityQueue<>((a, b) -> a[1] - b[1]);
int[] curr = {0, time[0] = 0};
pq.offer(curr);
ways[0] = 1;
while (!pq.isEmpty()) {
curr = pq.poll();
int city = curr[0], currentTime = curr[1];
if (currentTime > time[city]) {
continue;
}
for (int[] next : graph[city]) {
int neighbor = next[0], betweenTime = next[1];
int alt = currentTime + betweenTime;
if (time[neighbor] > alt) {
ways[neighbor] = ways[city];
pq.offer(new int[]{neighbor, time[neighbor] = alt});
} else if (time[neighbor] == currentTime + betweenTime) {
ways[neighbor] = (ways[neighbor] + ways[city]) % MOD;
}
}
}
return ways[n - 1];
}
Constrained Dijkstra’s
Given upper limit of weight sum, find/count all paths.
Reachable Nodes In Subdivided Graph
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
public int reachableNodes(int[][] edges, int maxMoves, int n) {
// graph[i][j]: count between the edge [i, j]
int[][] graph = new int[n][n];
for (int[] g : graph) {
Arrays.fill(g, -1);
}
for (int[] e : edges) {
graph[e[0]][e[1]] = e[2];
graph[e[1]][e[0]] = e[2];
}
// {node, available moves}
Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> -a[1]));
int[] curr = {0, maxMoves};
pq.offer(curr);
boolean[] visited = new boolean[n];
int count = 0;
while (!pq.isEmpty()) {
curr = pq.poll();
int node = curr[0], availableMoves = curr[1];
if (visited[node]) {
continue;
}
visited[node] = true;
count++;
for (int neighbor = 0; neighbor < n; neighbor++) {
if (graph[node][neighbor] >= 0) {
if (availableMoves > graph[node][neighbor] && !visited[neighbor]) {
pq.offer(new int[]{neighbor, availableMoves - graph[node][neighbor] - 1});
}
// number of nodes that are reachable on the edge (node, neighbor]
int reach = Math.min(availableMoves, graph[node][neighbor]);
count += reach;
// the remaining new nodes could be visited from the other direction
graph[neighbor][node] -= reach;
}
}
}
return count;
}
Given a contraint on sum of vertex values, minimize the sum of path values. In the problem below, we view the value of each vertex as 1, so the constraint stops
can be regarded as the sum of the vertex values.
Cheapest Flights Within K Stops
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int k) {
vector<vector<int>> graph(n, vector<int>(n));
for (const auto& f : flights) {
graph[f[0]][f[1]] = f[2];
}
vector<int> prices(n, numeric_limits<int>::max()), stops(n, numeric_limits<int>::max());
// {city, prices, stops}
auto cmp = [&](const array<int, 3>& a, const array<int, 3>& b) {
return a[1] > b[1];
};
priority_queue<array<int, 3>, vector<array<int, 3>>, decltype(cmp)> pq(cmp);
pq.push({src, prices[src] = 0, stops[src] = 0});
while (!pq.empty()) {
const auto curr = pq.top();
pq.pop();
int city = curr[0], p = curr[1], s = curr[2];
if (city == dst) {
return p;
}
for (int neighbor = 0; neighbor < n; neighbor++) {
if (graph[city][neighbor] > 0 && s <= k) {
int alt = p + graph[city][neighbor];
if (alt < prices[neighbor]) {
pq.push({neighbor, prices[neighbor] = alt, stops[neighbor] = s + 1});
} else if (s + 1 < stops[neighbor]) {
// although prices is not optimal at the moment, the number of stops is less than stops[neighbor]
// which means this path has the potential to be the optimal solution in later steps
//
// do not set stops[neighbor] = s + 1 here!
// stops[neighbor] is updated only if prices[neighbor] is updated
// it doesn't reflect the least stops of all paths so far
// iwo, currently it's possible that there exists a node where the stops are less than stops[node]
//
// stops[node] is a loose constraint
pq.push({neighbor, alt, s + 1});
}
}
}
}
return prices[dst] == numeric_limits<int>::max() ? -1 : prices[dst];
}
For example, n = 9, flights = [[0,1,1],[1,2,1],[2,3,1],[3,7,1],[0,4,3],[4,5,3],[5,7,3],[0,6,5],[6,7,100],[7,8,1]], src = 0, dst = 8, k = 3
.
graph TD
0((0)) -- 1 --> 1((1))
1 -- 1 --> 2((2))
2 -- 1 --> 3((3))
3 -- 1 --> 7((7))
0 -- 3 --> 4((4))
4 -- 3 --> 5((5))
5 -- 3 --> 7
0 -- 5 --> 6((6))
6 -- 100 --> 7
7 -- 1 --> 8((8))
If in else if (s + 1 < stops[neighbor])
, the statement is pq.offer(new int[]{neighbor, alt, stops[neighbor] = s + 1});
, then the path 0 -> 6 -> 7
would set stops[7] = 2
and exclude the correct path 0 -> 4 -> 5 -> 7
(because its stops == 3
).
Given a contraint on sum of path values, minimize the sum of vertex values.
Minimum Cost to Reach Destination in Time
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
public int minCost(int maxTime, int[][] edges, int[] passingFees) {
int n = passingFees.length;
List<int[]>[] graph = new List[n];
for (int i = 0; i < n; i++) {
graph[i] = new ArrayList<>();
}
for (int[] e : edges) {
graph[e[0]].add(new int[]{e[1], e[2]});
graph[e[1]].add(new int[]{e[0], e[2]});
}
int[] times = new int[n];
Arrays.fill(times, maxTime + 1);
// {city, cost, time}
Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[1]));
int[] curr = {0, passingFees[0], times[0] = 0};
pq.offer(curr);
while (!pq.isEmpty()) {
curr = pq.poll();
int city = curr[0], cost = curr[1], time = curr[2];
if (city == n - 1) {
return cost;
}
for (int[] next : graph[city]) {
int neighbor = next[0], altTime = time + next[1], altCost = cost + passingFees[neighbor];
if (altTime < times[neighbor]) {
pq.offer(new int[]{neighbor, altCost, times[neighbor] = altTime});
}
}
}
return -1;
}
Dijkstra’s + DP
Minimum Cost to Reach City With Discounts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
public int minimumCost(int n, int[][] highways, int discounts) {
// buils graph
List<int[]>[] graph = new List[n];
for (int i = 0; i < n; i++) {
graph[i] = new ArrayList<>();
}
for (int[] h : highways) {
graph[h[0]].add(new int[]{h[1], h[2]});
graph[h[1]].add(new int[]{h[0], h[2]});
}
// Dijkstra + DP
// visited[i][j]: min cost of visited city i with j discounts
int[][] visited = new int[n][discounts + 1];
for (int i = 0; i < n; i++) {
Arrays.fill(visited[i], Integer.MAX_VALUE);
}
// {city, usedDiscount, cost}
Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[2]));
int[] curr = {0, 0, visited[0][0] = 0};
pq.offer(curr);
while (!pq.isEmpty()) {
curr = pq.poll();
int city = curr[0], d = curr[1], cost = curr[2];
if (visited[city][d] < cost) {
continue;
}
if (city == n - 1) {
return cost;
}
for (int[] next : graph[city]) {
int neighbor = next[0], toll = next[1];
// doesn't use discount
int alt = cost + toll;
if (alt < visited[neighbor][d]) {
pq.offer(new int[]{neighbor, d, visited[neighbor][d] = alt});
}
// uses discount
alt = cost + toll / 2;
if (d < discounts && alt < visited[neighbor][d + 1]) {
pq.offer(new int[]{neighbor, d + 1, visited[neighbor][d + 1] = alt});
}
}
}
return -1;
}
Bellman-Ford Algorithm
Bellman-Ford algorithm is an algorithm that computes shortest paths from a single source vertex to all of the other vertices in a weighted digraph. It is capable of handling graphs in which some of the edge weights are negative numbers.
Cheapest Flights Within K Stops
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public int findCheapestPrice(int n, int[][] flights, int src, int dst, int k) {
int[] prices = new int[n], tmp = new int[n];
Arrays.fill(prices, Integer.MAX_VALUE);
prices[src] = 0;
for(int i = 0; i <= k; i++) {
System.arraycopy(prices, 0, tmp, 0, n);
for (int[] f: flights) {
int curr = f[0], next = f[1], price = f[2];
if (tmp[curr] < Integer.MAX_VALUE) {
prices[next] = Math.min(prices[next], tmp[curr] + price);
}
}
}
return prices[dst] == Integer.MAX_VALUE ? -1 : prices[dst];
}
Floyd-Warshall Algorithm
Floyd-Warshall algorithm is an algorithm for finding shortest paths in a directed weighted graph with positive or negative edge weights (but with no negative cycles). A single execution of the algorithm will find the lengths (summed weights) of shortest paths between all pairs of vertices.
Pseudocode:
1
2
3
4
5
6
7
8
9
10
11
let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
for each edge (u, v) do
dist[u][v] ← w(u, v) // The weight of the edge (u, v)
for each vertex v do
dist[v][v] ← 0
for k from 1 to |V|
for i from 1 to |V|
for j from 1 to |V|
if dist[i][j] > dist[i][k] + dist[k][j]
dist[i][j] ← dist[i][k] + dist[k][j]
end if
Time complexity: \(\Theta(V^3)\)
Count Subtrees With Max Distance Between Cities
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public int[] countSubgraphsForEachDiameter(int n, int[][] edges) {
// Floyd-Warshall
int[][] tree = new int[n][n];
for (int[] t : tree) {
Arrays.fill(t, n);
}
for (int[] e : edges) {
int i = e[0] - 1, j = e[1] - 1;
tree[i][j] = tree[j][i] = 1;
}
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
tree[i][j] = Math.min(tree[i][j], tree[i][k] + tree[k][j]);
}
}
}
int[] result = new int[n - 1];
// bit mask
for (int state = 1; state < (1 << n); state++) {
int k = Integer.bitCount(state);
// number of edges in state
int e = 0;
// shortest path of all pairs in state
int d = 0;
for (int i = 0; i < n; i++) {
if (isBitSet(state, i)) {
for (int j = i + 1; j < n; j++) {
if (isBitSet(state, j)) {
e += tree[i][j] == 1 ? 1 : 0;
d = Math.max(d, tree[i][j]);
}
}
}
}
// e == k - 1 means state is a subtree
if (e == k - 1 && d > 0) {
result[d - 1]++;
}
}
return result;
}
private boolean isBitSet(int i, int b) {
return (i & (1 << b)) != 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// Floyd–Warshall Algorithm
public List<Boolean> checkIfPrerequisite(int numCourses, int[][] prerequisites, int[][] queries) {
boolean[][] graph = new boolean[numCourses][numCourses];
for (int[] p : prerequisites) {
graph[p[0]][p[1]] = true;
}
for (int k = 0; k < numCourses; k++) {
for (int i = 0; i < numCourses; i++) {
for (int j = 0; j < numCourses; j++) {
graph[i][j] = graph[i][j] || (graph[i][k] && graph[k][j]);
}
}
}
List<Boolean> answer = new ArrayList<>();
for (int[] q : queries) {
answer.add(graph[q[0]][q[1]]);
}
return answer;
}
Paint and Expansion
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
public int shortestBridge(int[][] grid) {
int n = grid.length;
// paints one island to 2
for (int i = 0; i < n; i++) {
int j = 0;
while (j < n) {
if (paint(grid, i, j, 2)) {
break;
}
j++;
}
if (j < n) {
break;
}
}
int color = 2;
while (true) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == color) {
for (int[] d : DIRECTIONS) {
if (expand(grid, i + d[0], j + d[1], color)) {
return color - 2;
}
}
}
}
}
color++;
}
}
private boolean paint(int[][] grid, int i, int j, int color) {
if (i < 0 || j < 0 || i == grid.length || j == grid.length || grid[i][j] != 1) {
return false;
}
grid[i][j] = color;
for (int[] d : DIRECTIONS) {
paint(grid, i + d[0], j + d[1], color);
}
return true;
}
private boolean expand(int[][] grid, int i, int j, int color) {
if (i < 0 || j < 0 || i == grid.length || j == grid.length) {
return false;
}
if (grid[i][j] == 0) {
grid[i][j] = color + 1;
}
// returns true if it reaches the other island
return grid[i][j] == 1;
}
Minimum Number of Days to Disconnect Island
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
private int[][] grid;
private int m, n;
public int minDays(int[][] grid) {
this.grid = grid;
this.m = grid.length;
this.n = grid[0].length;
// checks if there's only one island
int color = 1;
int count = countIslands(color);
if (count != 1) {
return 0;
}
color++;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
// backtracking
if (grid[i][j] == color) {
grid[i][j] = 0;
if (countIslands(color) != 1) {
return 1;
}
// painting bumps the color
color++;
grid[i][j] = color;
}
}
}
// any island can be disconnected in at most 2 days
return 2;
}
// counts islands with color, and paints these islands to (color + 1)
private int countIslands(int color) {
int count = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == color) {
paint(i, j, color);
count++;
// if there are more than one land, returns directly
if (count > 1) {
return count;
}
}
}
}
return count;
}
// paints island of (i, j) to (color + 1)
private void paint(int i, int j, int color) {
if (i < 0 || i == m || j < 0 || j == n || grid[i][j] == 0 || grid[i][j] == color + 1) {
return;
}
// marks the cell as visited by incrementing it by 1
grid[i][j] = color + 1;
for (int[] d : DIRECTIONS) {
paint(i + d[0], j + d[1], color);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
public int largestIsland(int[][] grid) {
// color : island size
Map<Integer, Integer> map = new HashMap<>();
// images the grid is surrounded by water (color 0)
map.put(0, 0);
// paints each island with a unique color
int n = grid.length;
int color = 2; // color starts at 2
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 1) {
map.put(color, paint(grid, i, j, color));
color++;
}
}
}
// initially, if all cells are 1, they will be painted to 2
// and the size of island 2 will be the final result,
// since at most one operation can be performed.
// otherwise, we initialize max to 0
int max = map.getOrDefault(2, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
// operation
if (grid[i][j] == 0) {
// set of islands (including water) surrounding the current 0
Set<Integer> set = new HashSet<>();
for (int[] d : DIRECTIONS) {
int r = i + d[0], c = j + d[1];
if (r < 0 || r == n || c < 0 || c == n) {
set.add(0);
} else {
set.add(grid[r][c]);
}
}
int size = 1;
for (int island : set) {
size += map.get(island);
}
max = Math.max(max, size);
}
}
}
return max;
}
private int paint(int[][] grid, int i, int j, int color) {
// grid[i][j] != 1 means it's either water or another island
if (i < 0 || j < 0 || i == grid.length || j == grid.length || grid[i][j] != 1) {
return 0;
}
grid[i][j] = color;
int size = 1;
for (int[] d : DIRECTIONS) {
size += paint(grid, i + d[0], j + d[1], color);
}
return size;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
public int[][] modifiedGraphEdges(int n, int[][] edges, int source, int destination, int target) {
// {node, [neighbor, weight]}
List<int[]>[] g = new List[n];
for (int i = 0; i < n; i++) {
g[i] = new ArrayList<>();
}
List<int[]> list = new ArrayList<>();
// (node A, node B) : weight between A and B
// where node A < node B
int[][] weights = new int[n][n];
for (int[] e : edges) {
g[e[0]].add(new int[]{e[1], e[2]});
g[e[1]].add(new int[]{e[0], e[2]});
int a = Math.min(e[0], e[1]), b = Math.max(e[0], e[1]);
list.add(new int[]{a, b, weights[a][b] = e[2]});
}
// treats negative edges as disconnected
// calculates the shortest distances from destionation to all nodes
// if the shortest distance between source and destionation is alreay less than target
// modifying the negative edges will possible make the distance even shorter, so no solution
int[][] reverse = dijkstra(n, g, destination, true);
if (reverse[0][source] < target) {
return new int[0][];
}
// treats negative edges as weight 1
// the shortest distance is min of assigning positive values in [1, 2e9]
// the shortest distance must be no greater than the target
int[][] res = dijkstra(n, g, source, false);
if (res[0][destination] > target) {
return new int[0][];
}
// when all negative edges are 1
// constructs the shortest path from source to destionation
List<Integer> path = new LinkedList<>();
path.add(destination);
while (path.get(0) != source) {
path.add(0, res[1][path.get(0)]);
}
// adjusts each segment of the path if the original weight is negative
int d = 0, m = path.size();
for (int i = 0; i < m - 1; i++) {
int u = path.get(i), v = path.get(i + 1);
int a = Math.min(u, v), b = Math.max(u, v);
if (weights[a][b] == -1) {
// if there exists a postive weight value that makes the path total weight equal to target
// we can skip the remaining segments on the path
if ((weights[a][b] = Math.max(target - reverse[0][v] - d, 1)) > 1) {
break;
}
}
d += weights[a][b];
}
for (int[] e : list) {
// there's already a shortest path with targeted weight
// so the remaining negative edges can be assigned arbitrarily
if ((e[2] = weights[e[0]][e[1]]) == -1) {
e[2] = (int)2e9;
}
}
return list.toArray(new int[0][]);
}
private int[][] dijkstra(int n, List<int[]>[] graph, int src, boolean skipNegative) {
// dist[i]: distance from src to vertex i
// initializes all elements in the array to inf
int[] dist = new int[n], parents = new int[n];
Arrays.fill(dist, Integer.MAX_VALUE);
// {vertex, dist[vertex] when enqueued}
Queue<int[]> q = new PriorityQueue<>((a, b) -> a[1] - b[1]);
// initializes the queue to contain source only
int[] curr = {src, dist[src] = 0};
q.offer(curr);
while (!q.isEmpty()) {
// dequeues the best vertex
curr = q.poll();
int u = curr[0], du = curr[1];
// skips current if the vertex is visited
// (and hence already has a more optimal distance)
if (du > dist[u]) {
continue;
}
// checks all neighbors in the graph whether they are still in the queue or not
// then a vertex can be re-enqueued and thus its time complexity is more
// compared to traditional Dijkstra (Fibonacci queue version)
for (int[] next : graph[u]) {
int v = next[0], duv = next[1];
if (duv == -1) {
// if skip negative, negative edges are regarded as disconnected
if (skipNegative) {
continue;
}
duv = 1;
}
int alt = du + duv;
if (alt < dist[v]) {
parents[v] = u;
q.offer(new int[]{v, dist[v] = alt});
}
}
}
return new int[][]{dist, parents};
}