Segment Tree
Fundamentals
Efficient range query, while array modification is flexible.
Implementation
Recursive
The standard (recursive, top-down) Segment Tree requires \(4n\) vertices for working on an array of size \(n\).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
class SegmentTree {
private int n;
// One-based indexing, i.e. root is at index 1
private int[] arr;
private BiFunction<Integer, Integer, Integer> f;
// Default all-zero array
public SegmentTree(int n, BiFunction<Integer, Integer, Integer> f) {
this.n = n;
this.arr = new int[4 * n];
this.f = f;
}
// In all the below methods:
// v is the index of the segment tree array (`arr`)
// tl, tr, pos, l, r are indices of the input array (`nums`)
/**
* Builds the segment tree.
* @param nums the input array
* @param v the index of the current vertex (initial value = 1, root)
* @param tl left boundary of the current segment (initial value = 0)
* @param tr right boundary of the current segment (initial value = n - 1)
*/
public void build(int nums[], int v, int tl, int tr) {
if (tl == tr) {
arr[v] = nums[tl];
} else {
int tm = (tl + tr) / 2;
build(nums, v * 2, tl, tm);
build(nums, v * 2 + 1, tm + 1, tr);
arr[v] = f.apply(arr[v * 2], arr[v * 2 + 1]);
}
}
/**
* Updates nums[pos] = value.
* @param nums the input array
* @param v the index of the current vertex
* @param tl left boundary of the current segment
* @param tr right boundary of the current segment
* @param pos position of the element to be updated
* @param value new value
*/
public void update(int v, int tl, int tr, int pos, int value) {
if (tl == tr) {
arr[v] = value;
} else {
int tm = (tl + tr) / 2;
if (pos <= tm) {
update(v * 2, tl, tm, pos, value);
} else {
update(v * 2 + 1, tm + 1, tr, pos, value);
}
arr[v] = f.apply(arr[v * 2], arr[v * 2 + 1]);
}
}
/**
* f.apply() on interval [l, r].
* @param v the index of the current vertex
* @param tl left boundary of the current segment
* @param tr right boundary of the current segment
* @param l left boundary of the query, inclusive
* @param r right boundary of the query, inclusive
* @return query result
*/
public int query(int v, int tl, int tr, int l, int r) {
if (l > r) {
return 0;
}
if (l == tl && r == tr) {
return arr[v];
}
int tm = (tl + tr) / 2;
return f.apply(query(v * 2, tl, tm, l, Math.min(r, tm)), query(v * 2 + 1, tm + 1, tr, Math.max(l, tm + 1), r));
}
}
Iterative
The iterative (bottom-up) implementation below is based on Al.Cash’s blog Efficient and easy segment trees.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
class SegmentTree {
private int n;
private int[] arr;
private BiFunction<Integer, Integer, Integer> f;
// default all-zero array
public SegmentTree(int n, BiFunction<Integer, Integer, Integer> f) {
this.n = n;
this.arr = new int[2 * n];
this.f = f;
}
// initializes array with initValue
public SegmentTree(int n, int initValue, BiFunction<Integer, Integer, Integer> f) {
this(n, f);
Arrays.fill(arr, 0, this.n, initValue);
}
public SegmentTree(int[] nums, BiFunction<Integer, Integer, Integer> f) {
this(nums.length, f);
System.arraycopy(nums, 0, this.arr, this.n, this.n);
}
public void build() {
for (int i = n - 1; i > 0; i--) {
arr[i] = f.apply(arr[i * 2], arr[i * 2 + 1]);
}
}
// sets nums[index] = value
public void update(int index, int value) {
for (arr[index += n] = value; index > 1; index /= 2) {
// index and index ^ 1 are siblings
arr[index / 2] = f.apply(arr[index], arr[index ^ 1]);
}
}
// f.apply() on interval [start, end)
public int query(int start, int end) {
int res = 0;
for (start += n, end += n; start < end; start /= 2, end /= 2) {
if (start % 2 == 1) {
res = f.apply(res, arr[start++]);
}
if (end % 2 == 1) {
res = f.apply(res, arr[--end]);
}
}
return res;
}
}
Commutative
We generalize the implementation to support a commutative bi-function f(x, y)
.
Examples of commutative bi-functions:
- Sum
- Min
- Max
Max
Longest Increasing Subsequence II
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public int lengthOfLIS(int[] nums, int k) {
SegmentTree st = new SegmentTree(Arrays.stream(nums).max().getAsInt() + 1, (a, b) -> Math.max(a, b));
st.build();
int max = 0;
for (int num : nums) {
// implicit rolling dp:
// dp[i]: LIS until the current element, and the last element of the LIS is i
// finds the max in the range of the prev level dp
int prev = st.query(Math.max(1, num - k), num);
st.update(num, prev + 1);
max = Math.max(max, prev + 1);
}
return max;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public List<Integer> fallingSquares(int[][] positions) {
// Coordinate compression
// {pos, index of pos after compression}
Map<Integer, Integer> map = new TreeMap<>();
for (int[] p : positions) {
map.put(p[0], 0);
map.put(p[0] + p[1], 0);
}
int index = 0;
for (int c : map.keySet()) {
map.put(c, index++);
}
SegmentTree st = new SegmentTree(map.size(), (a, b) -> Math.max(a, b));
st.build();
List<Integer> list = new ArrayList<>();
int max = 0;
for (int[] p : positions) {
int l = map.get(p[0]), r = map.get(p[0] + p[1]);
int h = st.query(l, r) + p[1];
for (int i = l; i < r; i++) {
st.update(i, h);
}
list.add(max = Math.max(max, h));
}
return list;
}
Booking Concert Tickets in Groups
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
public class BookMyShow {
private int m, n;
private int[] rows;
private SegmentTree st;
public BookMyShow(int n, int m) {
this.m = m;
this.n = n;
this.rows = new int[n];
Arrays.fill(rows, m);
// {sum, max}
this.st = new SegmentTree(n, m, (a, b) -> new long[]{a[0] + b[0], Math.max(a[1], b[1])});
st.build();
}
// O(log^2(n))
public int[] gather(int k, int maxRow) {
int r = binarySearch(k, maxRow);
if (r < 0) {
return new int[0];
}
int col = m - rows[r];
rows[r] -= k;
st.update(r, k);
return new int[]{r, col};
}
private int binarySearch(int k, int maxRow) {
int low = 0, high = maxRow;
while (low < high) {
int mid = (low + high) >>> 1;
if (st.query(0, mid + 1)[1] >= k) {
high = mid;
} else {
low = mid + 1;
}
}
return rows[low] >= k ? low : -1;
}
public boolean scatter(int k, int maxRow) {
if (st.query(0, maxRow + 1)[0] < k) {
return false;
}
for (int i = 0; i <= maxRow && k > 0; i++) {
if (rows[i] > 0) {
int seats = Math.min(rows[i], k);
rows[i] -= seats;
k -= seats;
st.update(i, seats);
}
}
return true;
}
class SegmentTree {
private int n;
private long[][] arr;
private BiFunction<long[], long[], long[]> f;
// default all-zero array
public SegmentTree(int n, BiFunction<long[], long[], long[]> f) {
this.n = n;
this.arr = new long[2 * n][2];
this.f = f;
}
// initializes array with initValue
public SegmentTree(int n, int initValue, BiFunction<long[], long[], long[]> f) {
this(n, f);
for (int i = this.n; i < arr.length; i++) {
arr[i][0] = arr[i][1] = initValue;
}
}
public void build() {
for (int i = n - 1; i > 0; i--) {
arr[i] = f.apply(arr[i * 2], arr[i * 2 + 1]);
}
}
// set nums[index] -= k
public void update(int index, int k) {
arr[index + n][0] -= k;
arr[index + n][1] -= k;
index += n;
while (index > 1) {
// index and index ^ 1 are siblings
arr[index / 2] = f.apply(arr[index], arr[index ^ 1]);
index /= 2;
}
}
// f.apply() on interval [start, end)
public long[] query(int start, int end) {
long[] res = new long[2];
for (start += n, end += n; start < end; start /= 2, end /= 2) {
if (start % 2 == 1) {
res = f.apply(res, arr[start++]);
}
if (end % 2 == 1) {
res = f.apply(res, arr[--end]);
}
}
return res;
}
}
}
With recursive segment tree implementation, the binary search will take \(O(\log n)\) time, because we can check the parent node value node[1] >= k
(\(O(1)\)) in each level top-down, instead of calling query
function (\(O(\log n)\)) in each loop iteration bottom-up.
Non-commutative
Longest Substring of One Repeating Character
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
public int[] longestRepeating(String s, String queryCharacters, int[] queryIndices) {
int n = s.length();
Node[] nodes = new Node[n];
for (int i = 0; i < n; i++) {
nodes[i] = new Node(s.charAt(i));
}
SegmentTree st = new SegmentTree(nodes, (a, b) -> combine(a, b));
st.build();
int k = queryIndices.length;
int[] lengths = new int[k];
for (int i = 0; i < k; i++) {
st.update(queryIndices[i], new Node(queryCharacters.charAt(i)));
lengths[i] = st.query(0, n).longest;
}
return lengths;
}
class Node {
// e.g. "aabccc"
// len = 6
// longest = 3
// leftChar = 'a', rightChar = 'c'
// pLen = 2, sLen = 3
int len = 0;
int longest = 0;
char leftChar = 0, rightChar = 0;
// length of longest prefix/suffix substring of one repeating character
int pLen = 0, sLen = 0;
public Node() {
}
public Node(char ch) {
this.leftChar = this.rightChar = ch;
this.pLen = this.sLen = 1;
this.longest = 1;
this.len = 1;
}
}
public Node combine(Node left, Node right) {
Node node = new Node();
node.longest = Math.max(left.longest, right.longest);
if (left.rightChar == right.leftChar) {
node.longest = Math.max(node.longest, left.sLen + right.pLen);
}
node.len = left.len + right.len;
node.leftChar = left.leftChar;
node.rightChar = right.rightChar;
node.pLen = left.pLen + (left.pLen == left.len && left.leftChar == right.leftChar ? right.pLen : 0);
node.sLen = right.sLen + (right.sLen == right.len && right.rightChar == left.rightChar ? left.sLen : 0);
return node;
}
// non-commutative
class SegmentTree {
private int n;
private Node[] arr;
private BiFunction<Node, Node, Node> f;
// default all-zero array
public SegmentTree(int n, BiFunction<Node, Node, Node> f) {
this.n = n;
this.arr = new Node[2 * n];
this.f = f;
}
// initializes array with initValue
public SegmentTree(int n, Node initValue, BiFunction<Node, Node, Node> f) {
this(n, f);
Arrays.fill(arr, 0, this.n, initValue);
}
public SegmentTree(Node[] nums, BiFunction<Node, Node, Node> f) {
this(nums.length, f);
System.arraycopy(nums, 0, arr, this.n, this.n);
}
public void build() {
for (int i = n - 1; i > 0; i--) {
arr[i] = f.apply(arr[i * 2], arr[i * 2 + 1]);
}
}
// set nums[index] = value
public void update(int index, Node value) {
for (arr[index += n] = value; (index /= 2) > 0; ) {
// ensures the correct ordering of children, knowing that left child has even index
arr[index] = f.apply(arr[2 * index], arr [2 * index + 1]);
}
}
// f.apply() on interval [start, end)
public Node query(int start, int end) {
Node resl = new Node(), resr = new Node();
for (start += n, end += n; start < end; start /= 2, end /= 2) {
// nodes corresponding to the left border are processed from left to right
// while the right border moves from right to left
if (start % 2 == 1) {
resl = f.apply(resl, arr[start++]);
}
if (end % 2 == 1) {
resr = f.apply(arr[--end], resr);
}
}
return f.apply(resl, resr);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
private static final int MOD = (int)1e9 + 7;
public int rectangleArea(int[][] rectangles) {
// x1 and x2 of all rectangles
Set<Integer> xCoordinates = new TreeSet<>();
// rectangle tuple list:
// {y, x1, x2, sign}
// specifically,
// - {y1, x1, x2, 1}
// - {y2, x1, x2, -1}
// we will sweep lines up from y = 0
// - when y == y1, we are about to sweep the rectangle, sign > 0
// - when y == y2, we just finished sweeping the rectangle, sign < 0
List<int[]> rList = new ArrayList<>();
for (int[] r : rectangles) {
xCoordinates.add(r[0]);
xCoordinates.add(r[2]);
rList.add(new int[]{r[1], r[0], r[2], 1});
rList.add(new int[]{r[3], r[0], r[2], -1});
}
// x coordinate : ordinality in the ordered set
Map<Integer, Integer> xOrdinality = new HashMap<>();
int index = 0;
for (int x : xCoordinates) {
xOrdinality.put(x, index++);
}
// sorts rList by y
Collections.sort(rList, (a, b) -> Integer.compare(a[0], b[0]));
// count[i]: count of rectangles covering x[i, i + 1) on this line.
int[] count = new int[xCoordinates.size()];
// sweeps lines up from y = 0
long area = 0, prevLineSum = 0;
int prevY = 0;
for (int[] r : rList) {
int y = r[0], x1 = r[1], x2 = r[2], sign = r[3];
area = (area + (y - prevY) * prevLineSum) % MOD;
prevY = y;
// updates count of rectangles covering the current line
for (int i = xOrdinality.get(x1); i < xOrdinality.get(x2); i++) {
count[i] += sign;
}
// counts "area" of this line
// if we use segment tree here,
// the time complexity can be improved to O(log(n))
prevLineSum = 0;
index = 0;
Iterator<Integer> itr = xCoordinates.iterator();
int prev = itr.next();
while (itr.hasNext()) {
int curr = itr.next();
// if the current x interval is covered by some rectangle
// the interval will be part of the final area
// adds it to the current line sum (of x intervals)
if (count[index++] > 0) {
prevLineSum += curr - prev;
}
prev = curr;
}
}
return (int)area;
}
Segment Tree:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
private static final int MOD = (int)1e9 + 7;
public int rectangleArea(int[][] rectangles) {
// x1 and x2 of all rectangles
List<Integer> xCoordinates = new ArrayList<>();
// rectangle tuple list:
// {y, x1, x2, sign}
// specifically,
// - {y1, x1, x2, 1}
// - {y2, x1, x2, -1}
// we will sweep lines up from y = 0
// - when y == y1, we are about to sweep the rectangle, sign > 0
// - when y == y2, we just finished sweeping the rectangle, sign < 0
List<int[]> rList = new ArrayList<>();
for (int[] r : rectangles) {
if ((r[0] < r[2]) && (r[1] < r[3])) {
xCoordinates.add(r[0]);
xCoordinates.add(r[2]);
rList.add(new int[]{r[1], r[0], r[2], 1});
rList.add(new int[]{r[3], r[0], r[2], -1});
}
}
// sorts rList by y
Collections.sort(rList, (a, b) -> Integer.compare(a[0], b[0]));
// sorts x coordinates
Collections.sort(xCoordinates);
// x coordinate : ordinality in the ordered set
Map<Integer, Integer> xOrdinality = new HashMap<>();
for (int i = 0; i < xCoordinates.size(); i++) {
xOrdinality.put(xCoordinates.get(i), i);
}
SegmentTreeNode st = new SegmentTreeNode(0, xCoordinates.size() - 1, xCoordinates);
// sweeps lines up from y = 0
long area = 0, prevLineSum = 0;
int prevY = 0;
for (int[] r : rList) {
int y = r[0], x1 = r[1], x2 = r[2], sign = r[3];
area = (area + (y - prevY) * prevLineSum) % MOD;
prevY = y;
// updates count of rectangles crossed by the current line
prevLineSum = st.update(xOrdinality.get(x1), xOrdinality.get(x2), sign);
}
return (int)area;
}
class SegmentTreeNode {
int start, end; // [start, end]
List<Integer> list;
SegmentTreeNode left = null, right = null;
int count = 0; // count of rectangles covering the interval
long sum = 0; // sum of child intervals that are covered by some rectangle
public SegmentTreeNode(int start, int end, List<Integer> list) {
this.start = start;
this.end = end;
this.list = list;
}
private int getMid() {
return (start + end) >>> 1;
}
private SegmentTreeNode getLeft() {
return left = (left == null ? new SegmentTreeNode(start, getMid(), list) : left);
}
private SegmentTreeNode getRight() {
return right = (right == null ? new SegmentTreeNode(getMid(), end, list) : right);
}
// Adds val to range [i, j]
// returns sum of interval.counts
public long update(int i, int j, int val) {
if (i >= j) {
return 0;
}
SegmentTreeNode l = getLeft(), r = getRight();
if (start == i && end == j) { // some rectangle covers the entire interval
count += val;
} else {
// recursively updates child intervals
l.update(i, Math.min(getMid(), j), val);
r.update(Math.max(getMid(), i), j, val);
}
// If count > 0, then intervals between start and end will all be included
// otherwise, recursively sums child intervals
return sum = count > 0 ? list.get(end) - list.get(start) : l.sum + r.sum;
}
}
Range Updates (Lazy Propagation)
Updates/Adds and queries an entire segment of contiguous elements. The time complexity of both operations are \(O(\log n)\).
It’s more straightforward to implement lazy propagation with recursive segment tree.
Assignment on Segments
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
public List<Integer> fallingSquares(int[][] positions) {
// Coordinate compression
...
int n = map.size();
SegmentTree st = new SegmentTree(n, (a, b) -> Math.max(a, b));
List<Integer> list = new ArrayList<>();
int max = 0;
for (int[] p : positions) {
// l and r are inclusive
int l = map.get(p[0]), r = map.get(p[0] + p[1]) - 1;
int h = st.query(1, 0, n - 1, l, r) + p[1];
st.update(1, 0, n - 1, l, r, h);
list.add(max = Math.max(max, h));
}
return list;
}
class SegmentTree {
private int n;
// Root is at index 1
private int[] arr;
// marked[i]: all elements (the complete subtree) of segment i is assigned to the value arr[i]
private boolean[] marked;
private BiFunction<Integer, Integer, Integer> f;
// Default all-zero array
public SegmentTree(int n, BiFunction<Integer, Integer, Integer> f) {
this.n = n;
this.arr = new int[4 * n];
this.marked = new boolean[4 * n];
this.f = f;
}
private void push(int v) {
if (marked[v]) {
arr[v * 2] = arr[v * 2 + 1] = arr[v];
marked[v * 2] = marked[v * 2 + 1] = true;
marked[v] = false;
}
}
// Assignment on segments
public void update(int v, int tl, int tr, int l, int r, int value) {
if (l > r) {
return;
}
if (l == tl && tr == r) {
arr[v] = value;
marked[v] = true;
} else {
push(v);
int tm = (tl + tr) / 2;
update(v * 2, tl, tm, l, Math.min(r, tm), value);
update(v * 2 + 1, tm + 1, tr, Math.max(l, tm + 1), r, value);
// Applies the update back to the parent node
arr[v] = f.apply(arr[v * 2], arr[v * 2 + 1]);
}
}
// Query of a segment
public int query(int v, int tl, int tr, int l, int r) {
if (l > r) {
return 0;
}
if (l == tl && tr == r) {
return arr[v];
}
push(v);
int tm = (tl + tr) / 2;
return f.apply(query(v * 2, tl, tm, l, Math.min(r, tm)), query(v * 2 + 1, tm + 1, tr, Math.max(l, tm + 1), r));
}
}