Permutation
Permutation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public String getPermutation(int n, int k) {
List<Integer> num = new ArrayList<>();
int fact = 1;
for (int i = 1; i <= n; i++) {
num.add(i);
fact *= i;
}
StringBuffer sb = new StringBuffer();
k--; // list index is 0-based
for (int i = n; i > 0; i--) {
fact /= i;
int index = k / fact;
sb.append(num.remove(index));
k -= index * fact;
}
return sb.toString();
}
Lexicographically Sort
Maximize Greatness of an Array
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public int maximizeGreatness(int[] nums) {
Arrays.sort(nums);
// two pointers
int count = 0;
for (int num : nums) {
// for each integer on its sorted position
// checks if the leftmost unused integer is less than it
// if not, continues
if (num > nums[count]) {
count++;
}
}
return count;
}
Next Permutation
Algorithm: Generation in lexicographic order
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public void nextPermutation(int[] nums) {
// Narayana Pandita
// finds the largest index k such that a[k] < a[k + 1]
int i = nums.length - 2;
while (i >= 0 && nums[i + 1] <= nums[i]) {
i--;
}
if (i >= 0) {
// finds the largest index l greater than k such that a[k] < a[l]
int j = nums.length - 1;
while (j > i && nums[j] <= nums[i]) {
j--;
}
// swaps the value of a[k] with that of a[l]
swap(nums, i, j);
}
// reverses the sequence from a[k + 1] up to and including the final element a[n]
reverse(nums, i + 1);
}
private void reverse(int[] nums, int start) {
int i = start, j = nums.length - 1;
while (i < j) {
swap(nums, i++, j--);
}
}
private void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
Previous Permutation
Minimum Number of Operations to Make String Sorted
\[\frac{n!}{\prod{\mathbf{card}(c)}!}\]where \(n\) is the number of characters, and \(\mathbf{card}(c)\) is the count of each unique character.
https://www.geeksforgeeks.org/lexicographic-rank-string-duplicate-characters/
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
private static final int MOD = (int)1e9 + 7;
private static final int MAX_LENGTH = 3000;
public int makeStringSorted(String s) {
int[] factorial = new int[MAX_LENGTH + 1], inverse = new int[MAX_LENGTH + 1];
factorial[0] = 1;
inverse[0] = 1;
for (int i = 1; i < factorial.length; i++) {
factorial[i] = (int)((long)i * factorial[i - 1] % MOD);
inverse[i] = (int)modPow(factorial[i], MOD - 2);
}
int n = s.length();
long ops = 1;
int[] count = new int[26];
// for each s[i],
// 1) counts the number of smaller characters on the right side of s[i] (less_than)
// 2) computes the product of factorials of repetitions of each character (d_fac)
// 3) computes (less_than * fac(n - i - 1)) / (d_fac).
for (int i = n - 1; i >= 0; i--) {
count[s.charAt(i) - 'a']++;
long perm = (long)Arrays.stream(count).limit(s.charAt(i) - 'a').sum() * factorial[n - i - 1] % MOD;
for (int c : count) {
perm = perm * inverse[c] % MOD;
}
ops = (ops + perm) % MOD;
}
return (int)(ops - 1);
}
private long modPow(long x, long y) {
long res = 1;
while (y > 0) {
if ((y & 1) == 1) {
res = res * x % MOD;
}
x = x * x % MOD;
y >>= 1;
}
return res;
}
Construct Smallest Number From DI String
1
2
3
4
5
6
7
8
9
10
11
12
13
14
public String smallestNumber(String pattern) {
// 1 2 3 4 5 6 7 8 9
// D D I D D I D D
StringBuilder res = new StringBuilder(), sb = new StringBuilder();
for (int i = 0; i <= pattern.length(); i++) {
sb.append(i + 1);
// whenever encounters 'I', reverse the segment
if (i == pattern.length() || pattern.charAt(i) == 'I') {
res.append(sb.reverse());
sb = new StringBuilder();
}
}
return res.toString();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
public int numDupDigitsAtMostN(int n) {
List<Integer> nums = new ArrayList<>();
int tmp = n + 1;
while (tmp != 0) {
nums.add(0, tmp % 10);
tmp /= 10;
}
// counts the number with digits < numDigits
// e.g. 8765
// xxx
// xx
// x
int numDigits = nums.size(), noRepeats = 0;
for (int i = 0; i < numDigits - 1; i++) {
// excludes leading 0
noRepeats += 9 * permutation(9, i);
}
// counts the number with same prefix
// e.g. 8765
// 1xxx ~ 7xxx
// 80xx ~ 86xx
// 870x ~ 875x
// 8760 ~ 8765
boolean[] used = new boolean[10];
for (int i = 0; i < numDigits; i++) {
int d = nums.get(i);
// skips leading 0
for (int j = i == 0 ? 1 : 0; j < d; j++) {
// if the number j is not a part of the prefix
if (!used[j]) {
// prefix has (i + 1) digits
noRepeats += permutation(10 - i - 1, numDigits - i - 1);
}
}
// prefix has repeated number
if (used[d]) {
break;
}
used[d] = true;
}
return n - noRepeats;
}
// A(n, m)
private int permutation(int n, int m) {
int p = 1;
for (int i = 0; i < m; i++) {
p *= n--;
}
return p;
}
Dynamic Programming
Valid Permutations for DI Sequence
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
private static final int MOD = (int)1e9 + 7;
public int numPermsDISequence(String s) {
int n = s.length();
// dp[i][j]: number of permutations of [0, i], with DI-rule s.substring(0, i) and ending with digit j
int[][] dp = new int[n + 1][n + 1];
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= i; j++) {
if (s.charAt(i - 1) == 'D') {
// e.g. DID, 1032 -> DIDD that ends with 2
// 1032 -> 1043 -> 10432
// steps:
// 1. increments digits that are larger than or equal to j
// 2. appends j
// k >= j, so k -> j is D
for (int k = j; k < i; k++) {
dp[i][j] = (dp[i][j] + dp[i - 1][k]) % MOD;
}
} else {
// e.g. DID, 1032 -> DIDI that ends with 3
// 1032 -> 1042 -> 10423 (append)
// k < j, so k -> j is I
for (int k = 0; k < j; k++) {
dp[i][j] = (dp[i][j] + dp[i - 1][k]) % MOD;
}
}
}
}
int count = 0;
for (int i = 0; i <= n; i++) {
count = (count + dp[n][i]) % MOD;
}
return count;
}
This post is licensed under CC BY 4.0 by the author.