Post

Paths in Tree

Paths in Tree

Binary Tree Maximum Path Sum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
private int sum = Integer.MIN_VALUE;

public int maxPathSum(TreeNode root) {
    dfs(root);
    return sum;
}

/**
 * Max sum of paths which start from node.
 * @param node the root of the subtree
 * @return the max sum of paths starting from node
 */
private int dfs(TreeNode node) {
    if (node == null) {
        return 0;
    }

    int left = Math.max(0, dfs(node.left)), right = Math.max(0, dfs(node.right));

    sum = Math.max(sum, node.val + left + right);
    return node.val + Math.max(left, right);
}

Longest Univalue Path

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
private int path = 0;

public int longestUnivaluePath(TreeNode root) {
    length(root);
    return path;
}

/**
 * Max length of univalue paths which start from node.
 * @param node the root of the subtree
 * @return the max length of univalue paths starting from node
 */
private int length(TreeNode node) {
    if (node == null) {
        return 0;
    }

    // max univalue paths from the child nodes
    int left = length(node.left), right = length(node.right);

    // max univalue paths from the current node
    int leftPath = 0, rightPath = 0;
    if (node.left != null && node.left.val == node.val) {
        leftPath = left + 1;
    }
    if (node.right != null && node.right.val == node.val) {
        rightPath = right + 1;
    }

    path = Math.max(path, leftPath + rightPath);
    return Math.max(leftPath, rightPath);
}

Longest ZigZag Path in a Binary Tree

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public int longestZigZag(TreeNode root) {
    return dfs(root)[2];
}

private int[] dfs(TreeNode node) {
    if (node == null) {
        // max zigzag path at:
        // [0]: left child node
        // [1]: right child node
        // [2]: this node
        return new int[]{-1, -1, -1};
    }

    int[] left = dfs(node.left), right = dfs(node.right);

    // left[1], right[0] makes the path zigzag
    // leaves will have zigzag path == -1 + 1 == 0
    int path = Math.max(Math.max(left[1], right[0]) + 1, Math.max(left[2], right[2]));

    return new int[]{left[1] + 1, right[0] + 1, path};
}

Leaf-to-leaf Paths

Aggregate paths from current node to all leaf nodes in its subtree.

Diameter of Binary Tree

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
int diameter = 0;

int getHeight(TreeNode* node) {
    if (node == nullptr) {
        return 0;
    }

    int left = getHeight(node->left), right = getHeight(node->right);
    diameter = max(diameter, left + right);
    return max(left, right) + 1;
}

public:
int diameterOfBinaryTree(TreeNode* root) {
    getHeight(root);
    return diameter;
}

Similar problem: Diameter of N-Ary Tree

Number of Good Leaf Nodes Pairs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
private int distance = 0;
private int pairs = 0;

public int countPairs(TreeNode root, int distance) {
    this.distance = distance;
    dfs(root);
    return pairs;
}

// arr[i]: the number of leaf nodes whose distances to the current node is (i - 1)
private int[] dfs(TreeNode node) {
    int[] count = new int[distance + 1];
    if (node == null) {
        return count;
    }

    if (node.left == node.right) {
        count[1] = 1;
        return count;
    }

    int[] left = dfs(node.left), right = dfs(node.right);

    // Prefix sum of right
    int[] p = new int[right.length];
    for (int i = 0; i < distance; i++) {
        p[i + 1] = p[i] + right[i];
    }

    for (int i = 1; i < distance; i++) {
        // p[distance - i + 1] = sum(right[0]...right[distance - 1])
        // i.e. count of all right nodes where left[i] + right[j] <= distance
        pairs += left[i] * p[distance - i + 1];
    }

    for (int i = 1; i < distance; i++) {
        count[i + 1] = left[i] + right[i];
    }

    return count;
}

Any-to-any Paths

Aggregate paths from current node to all ancestor nodes in its subtree.

Count Valid Paths in a Tree

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
   vector<bool> notPrime;
    long long cnt = 0;

    // Number of paths from `node` to its ancestors:
    // p[i]: paths contain i prime numbers
    pair<int,int> dfs(const vector<vector<int>>& g, int node, int parent) {
        // 0 if not prime; 1 otherwise.
        pair<int,int> p = {notPrime[node], !notPrime[node]};
        for (int neighbor : g[node]) {
            if (neighbor != parent) {
                auto np = dfs(g, neighbor, node);
                // cnt and p are updated in every iteration - this trick is very important
                // If cnt is updated after the for loop, there can be invalid paths
                // e.g. 3-4-1-2, uses 1 as root
                // When 1 is the current node, 1-3 and 1-4 would be viewed as valid segments
                // which composes the path. But that is not valid, since 3 and 4 are from the same subtree. 
                cnt += (long long)np.first * p.second + (long long)np.second * p.first;
                if (notPrime[node]) {
                    p.first += np.first;
                    p.second += np.second;
                } else {
                    p.second += np.first;
                }
            }
        }
        return p;
    }

public:
    long long countPaths(int n, vector<vector<int>>& edges) {
        vector<vector<int>> g(n + 1, vector<int>{});
        for (const auto& e : edges) {
            g[e[0]].push_back(e[1]);
            g[e[1]].push_back(e[0]);
        }

        notPrime.resize(n + 1);
        notPrime[1] = true;
        for (int i = 2; i <= n; i++) {
            if (!notPrime[i]) {
                for (int j = i; (long long)i * j <= n; j++) {
                    notPrime[i * j] = true;
                }
            }
        }

        dfs(g, 1, 0);
        return cnt;
    }
This post is licensed under CC BY 4.0 by the author.