MST
MST
A spanning tree T
of an undirected graph G
is a subgraph that is a tree which includes all of the vertices of G
.
A minimum spanning tree (MST) or minimum weight spanning tree is a spanning tree whose sum of edge weights is as small as possible.
Algorithms
Prim’s
- Initialize a tree with a single vertex, chosen arbitrarily from the graph.
- Grow the tree by one edge: of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and transfer it to the tree.
- Repeat step 2 (until all vertices are in the tree).
Time complexity (heap + adjacent list): O(E log V)
Min Cost to Connect All Points
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// Prim's
public int minCostConnectPoints(int[][] points) {
boolean[] mst = new boolean[points.length];
Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[1])); // point, distance
int node = 0, count = 1, cost = 0;
while (count < points.length) {
mst[node] = true;
// adds edges of the current node to the heap
for (int i = 0; i < points.length; i++) {
if (!mst[i]) {
pq.offer(new int[]{i, Math.abs(points[node][0] - points[i][0]) + Math.abs(points[node][1] - points[i][1])});
}
}
// finds the vertex nearest to the tree
while (mst[pq.peek()[0]]) {
pq.poll();
}
int[] pair = pq.poll();
node = pair[0];
cost += pair[1];
count++;
}
return cost;
}
For complete graph, the number edges is much more than point. Therefore, we can keep track of min distance of each point instead.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
private static final int MAX = 4_000_001;
// Prim's (complete graph)
public int minCostConnectPoints(int[][] points) {
int[] d = new int[points.length]; // min distance to the current point
Arrays.fill(d, MAX);
int node = 0, count = 1, cost = 0;
while (count < points.length) {
// marks the current point as in the forest
d[node] = Integer.MAX_VALUE;
// finds the nearest point and updates min distances
int minNode = node;
for (int i = 0; i < points.length; i++) {
if (d[i] != Integer.MAX_VALUE) {
d[i] = Math.min(d[i], Math.abs(points[node][0] - points[i][0]) + Math.abs(points[node][1] - points[i][1]));
if (d[i] < d[minNode]) {
minNode = i;
}
}
}
cost += d[minNode];
node = minNode;
count++;
}
return cost;
}
Kruskal’s
- create a forest F (a set of trees), where each vertex in the graph is a separate tree
- create a set S containing all the edges in the graph
- while S is nonempty and F is not yet spanning
- remove an edge with minimum weight from S
- if the removed edge connects two different trees then add it to the forest F, combining two trees into a single tree
Time complexity: O(E log E)
= O(E log V)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
private int[] forest;
// Kruskal's
public int minCostConnectPoints(int[][] points) {
forest = new int[points.length];
Arrays.fill(forest, -1);
Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[2])); // i, j, distance
for (int i = 0; i < points.length; i++) {
for (int j = i + 1; j < points.length; j++) {
pq.offer(new int[]{i, j, Math.abs(points[i][0] - points[j][0]) + Math.abs(points[i][1] - points[j][1])});
}
}
int cost = 0;
while (!pq.isEmpty()) {
int[] tuple = pq.poll();
if (union(tuple[1], tuple[0])) {
cost += tuple[2];
// tree is already spanning
if (forest[tuple[0]] == -points.length) {
break;
}
}
}
return cost;
}
private int find(int u) {
return forest[u] < 0 ? u : find(forest[u]);
}
private boolean union(int u, int v) {
int uset = find(u), vset = find(v);
if (uset == vset) {
return false;
}
forest[vset] += forest[uset]; // records the number of points in the forest
forest[uset] = vset;
return true;
}
Find Critical and Pseudo-Critical Edges in Minimum Spanning Tree
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
private int[] forest;
private int[][] edges;
public List<List<Integer>> findCriticalAndPseudoCriticalEdges(int n, int[][] edges) {
this.edges = edges;
int m = edges.length;
Integer[] index = new Integer[m];
for (int i = 0; i < m; i++) {
index[i] = i;
}
Arrays.sort(index, Comparator.comparingInt(i -> edges[i][2]));
List<Integer> critical = new ArrayList<>(), pseudo = new ArrayList<>();
int weight = mst(n, index, -1, -1);
for (int i : index) {
// if the edge is critical
// deletes it and gets a new MST
// the weight will increase
if (weight < mst(n, index, i, -1)) {
critical.add(i);
// adds the edge to the MST by force:
// - adds it to the MST edge set
// - runs the MST algorithm for the rest of the edges in the tree
// if the edge is pseudo-critical
// the weight doesn't change
} else if (weight == mst(n, index, -1, i)) {
pseudo.add(i);
}
}
return Arrays.asList(critical, pseudo);
}
// if there's no edge to delete, edgeToDelete < 0
// so is edgeToForceAdd
private int mst(int n, Integer[] index, int edgeToDelete, int edgeToForceAdd) {
forest = new int[n];
Arrays.fill(forest, -1);
// count is the number of edges in the edge set of the MST
int weight = 0, count = 0;
if (edgeToForceAdd >= 0) {
weight += edges[edgeToForceAdd][2];
union(edges[edgeToForceAdd][0], edges[edgeToForceAdd][1]);
count++;
}
for (int i : index) {
if (i == edgeToDelete || i == edgeToForceAdd) {
continue;
}
if (union(edges[i][0], edges[i][1])) {
weight += edges[i][2];
count++;
}
if (count == n - 1) {
break;
}
}
return count == n - 1 ? weight : Integer.MAX_VALUE;
}
private int find(int u) {
return forest[u] < 0 ? u : find(forest[u]);
}
private boolean union(int u, int v) {
int uset = find(u), vset = find(v);
if (uset == vset) {
return false;
}
forest[uset] = vset;
return true;
}
Optimize Water Distribution in a Village
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
private int[] forest;
// Imagine there's a House 0 with a 0-weight well
// The cost from House i to House 0 is wells[i - 1]
// Now the problem is reduced to an MST problem
// Kruscal's
public int minCostToSupplyWater(int n, int[] wells, int[][] pipes) {
this.forest = new int[n + 1];
// {House i, House j, weight}
Queue<int[]> edges = new PriorityQueue<>(Comparator.comparingInt(a -> a[2]));
for (int i = 0; i < n; i++) {
this.forest[i + 1] = i + 1;
// edge between House 0 and House (i + 1)
edges.offer(new int[] {0, i + 1, wells[i]});
}
for (int[] p : pipes) {
edges.offer(p);
}
int cost = 0;
while (!edges.isEmpty()) {
int[] e = edges.poll();
int u = find(e[0]), v = find(e[1]);
if (u != v) {
cost += e[2];
forest[u] = v;
if (--n == 0) {
break;
}
}
}
return cost;
}
private int find(int u) {
return forest[u] == u ? u : find(forest[u]);
}
This post is licensed under CC BY 4.0 by the author.