Map
Map
Java
Methods
Prefix | Suffix | Parameter | Comparison |
---|---|---|---|
ceiling | entry/key | key | >= |
floor | entry/key | key | <= |
higher | entry/key | key | > |
lower | entry/key | key | < |
head | map | toKey | < |
head | map | toKey, inclusive | < or <= |
tail | map | fromKey | >= |
tail | map | fromKey, inclusive | > or >= |
(poll)first | entry | least | |
(poll)last | entry | greatest | |
descending | map | ||
sub | map | fromKey, fromInclusive, toKey, toInclusive | |
descending | keySet | ||
navigable | keySet |
Prefix | Suffix | Parameter | Comparison |
---|---|---|---|
head | map | toKey | < |
tail | map | fromKey | >= |
first | key | lowest | |
last | key | highest | |
sub | map | fromKey, toKey | [) |
Note that the ordering maintained by a sorted map (whether or not an explicit comparator is provided) must be consistent with equals if the sorted map is to correctly implement the Map interface.
The ordering imposed by a comparator c
on a set of elements S
is said to be consistent with equals if and only if c.compare(e1, e2)==0
has the same boolean value as e1.equals(e2)
for every e1
and e2
in S
.
Sort Map by Values
Ascending
1
2
3
4
5
6
7
Map<String, Integer> unSortedMap = getUnSortedMap();
LinkedHashMap<String, Integer> sortedMap = new LinkedHashMap<>();
unSortedMap.entrySet()
.stream()
.sorted(Map.Entry.comparingByValue())
.forEachOrdered(e -> sortedMap.put(e.getKey(), e.getValue()));
Descending
1
2
3
4
5
6
7
Map<String, Integer> unSortedMap = getUnSortedMap();
LinkedHashMap<String, Integer> sortedMap = new LinkedHashMap<>();
unSortedMap.entrySet()
.stream()
.sorted(Map.Entry.comparingByValue(Comparator.reverseOrder()))
.forEachOrdered(e -> sortedMap.put(e.getKey(), e.getValue()));
Sort Map by Values then Keys
1
2
.sorted(Comparator.comparing(Map.Entry<String, Integer>::getValue)
.thenComparing(Comparator.comparing(Map.Entry<String, Integer>::getKey)))
1
2
.sorted(Map.Entry.<String, Integer>comparingByValue()
.thenComparing(Map.Entry.comparingByKey()))
Key with the max value in a map
1
Collections.max(map.entrySet(), Map.Entry.comparingByValue()).getKey();
- default V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction)
- default boolean remove(Object key, Object value)
- V put(K key, V value)
- Returns the previous value associated with key, or null if there was no mapping for key.
- default V replace(K key, V value)
1 2 3 4
if (map.containsKey(key)) { return map.put(key, value); } else return null;
Map.Entry
C++
Methods
iterator upper_bound(const key_type& k)
-> “higher”iterator lower_bound(const key_type& k)
-> “ceiling”map::operator[]
- “find-or-add”
- Default constructible and assignable
map::at
: same as[]
except throws an exception when the key doesn’t existmap::insert
: doesn’t modify the map if the key existsmap::emplace
: parameters are forwareded to the constructor of the object stored in the container. No copies.
The following example is from this post:
1
2
3
4
5
6
7
8
9
10
K t; V u;
std::map<K,V> m; // std::map<K,V>::value_type is std::pair<const K,V>
m.insert( std::pair<const K,V>(t,u) );
m.insert( std::map<K,V>::value_type(t,u) );
m.insert( std::make_pair<const K,V>(t,u) );
m.insert( std::make_pair(t,u) );
m.emplace(t,u);
@walletfox. (2018). Overview of std::map’s Insertion / Emplacement Methods in C++17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public String[] getFolderNames(String[] names) {
String[] folders = new String[names.length];
// name: smallest valid integer
Map<String, Integer> map = new HashMap<>();
for (int i = 0; i < names.length; i++) {
String curr = names[i];
int count = map.getOrDefault(curr, 1);
while (map.containsKey(curr)) {
curr = names[i] + "(" + count++ + ")";
}
map.put(curr, 1);
map.put(names[i], count);
folders[i] = curr;
}
return folders;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public String[] spellchecker(String[] wordlist, String[] queries) {
Set<String> words = new HashSet<>();
Map<String, String> cap = new HashMap<>(), vowel = new HashMap<>();
for (String w : wordlist) {
words.add(w);
String lower = w.toLowerCase(), devowel = lower.replaceAll("[aeiou]", "#");
cap.putIfAbsent(lower, w);
vowel.putIfAbsent(devowel, w);
}
int n = queries.length;
String[] result = new String[n];
for (int i = 0; i < n; i++) {
String q = queries[i];
if (words.contains(q)) {
result[i] = q;
continue;
}
String lower = q.toLowerCase(), devowel = lower.replaceAll("[aeiou]", "#");
if (cap.containsKey(lower)) {
result[i] = cap.get(lower);
continue;
}
if (vowel.containsKey(devowel)) {
result[i] = vowel.get(devowel);
continue;
}
result[i] = "";
}
return result;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
public int tupleSameProduct(int[] nums) {
Map<Integer, Integer> map = new HashMap<>();
int count = 0;
for (int i = 0; i < nums.length; i++) {
for (int j = i + 1; j < nums.length; j++) {
int p = nums[i] * nums[j];
int c = map.getOrDefault(p, 0);
// acculumates the count so we don't need a second pass
count += c * 8;
map.put(p, c + 1);
}
}
return count;
}
Buckets
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
public boolean containsNearbyAlmostDuplicate(int[] nums, int k, int t) {
Map<Long, Long> buckets = new HashMap<>();
// capacity of each bucket
long capacity = (long)t + 1;
for (int i = 0; i < nums.length; i++) {
long bucket = Math.floorDiv(nums[i], capacity);
// checks if the bucket already contains a number
if (buckets.containsKey(bucket)) {
return true;
}
// checks the neighbor buckets
if (buckets.containsKey(bucket - 1) && Math.abs(nums[i] - buckets.get(bucket - 1)) < capacity) {
return true;
}
if (buckets.containsKey(bucket + 1) && Math.abs(nums[i] - buckets.get(bucket + 1)) < capacity) {
return true;
}
buckets.put(bucket, (long)nums[i]);
// removes out-of-window buckets
if (i >= k) {
buckets.remove(Math.floorDiv(nums[i - k], capacity));
}
}
return false;
}
TreeMap
Depth of BST Given Insertion Order
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public boolean canReorderDoubled(int[] arr) {
Map<Integer, Integer> count = new TreeMap<>();
for (int a : arr) {
count.put(a, count.getOrDefault(a, 0) + 1);
}
for (int a : count.keySet()) {
if (count.get(a) == 0) {
continue;
}
int pair = a < 0 ? a / 2 : a * 2;
// if a is an odd negative, we can't find a pair that pair * 2 == a
// if count(a) > count(pair), there's not enough pair to cancel a out
// since we are scanning in ascending order
if ((a < 0 && a % 2 != 0) || count.get(a) > count.getOrDefault(pair, 0)) {
return false;
}
count.put(pair, count.get(pair) - count.get(a));
}
return true;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
public int[] recoverArray(int n, int[] sums) {
Arrays.sort(sums);
return recover(sums).stream().mapToInt(i -> i).toArray();
}
private List<Integer> recover(int[] sums) {
if (sums.length == 1) {
return new ArrayList<>();
}
Map<Integer, Long> count = Arrays.stream(sums).boxed()
.collect(Collectors.groupingBy(Function.identity(), Collectors.counting()));
// considers the subset sums of arr [x, y, z]
// sums can be split into two groups:
// A B
// [0, y, z] + [x, x + y, x + z]
// sorts sums
// d = sums[1] - sums[0]
// then x == -d or x == d
// proof:
// s0, s1, ..., s_k, where k = 2 ^ n
// since one of the subsets is empty, there always exists s_i == 0
// - if there's at least one negative subset sum s_0
// - if there's only one negative subset sum
// - d = arr[m], where arr[m] is the least non-negative
// x = d
// e.g. arr = [-3, 1]
// - d = -arr[0], x = -d
// e.g. arr = [-3, 4]
// - if there're more than one negative subset sum
// - d = -arr[m], where arr[m] < 0 and |arr[m]| is the least
// x = -d
// - else
// - if there're more than one subset sum == 0
// d = 0, x = d = 0
// - else
// d = arr[m], where arr[m] is the least
// x = d
int d = sums[1] - sums[0];
// splits the subset sums into two groups A and B
int[] groupA = new int[sums.length / 2], groupB = new int[sums.length / 2];
// by default, Group A + x == Group B
boolean toSwap = false;
// iterates the sums ascendingly, finds the matching b == a + d
int i = 0;
for (int a : sums) {
int b = a + d;
if (count.getOrDefault(a, 0l) > 0) {
count.put(b, count.get(b) - 1);
count.put(a, count.get(a) - 1);
// when b == 0, we can swap Group B and Group A
// and take -d as the new x
if (b == 0) {
toSwap = true;
}
groupA[i] = a;
groupB[i] = b;
i++;
}
}
// arr is sorted
List<Integer> arr = recover(toSwap ? groupB : groupA);
// arr.add(x)
arr.add(toSwap ? -d : d);
return arr;
}
Dynamic Programming
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public int oddEvenJumps(int[] arr) {
int n = arr.length;
// whether has higher or lower later elements
boolean[] hasHigher = new boolean[n], hasLower = new boolean[n];
hasHigher[n - 1] = hasLower[n - 1] = true;
// {element, index}
TreeMap<Integer, Integer> map = new TreeMap<>();
map.put(arr[n - 1], n - 1);
// in reverse order
int count = 1;
for (int i = n - 2; i >= 0; i--) {
var c = map.ceilingEntry(arr[i]);
var f = map.floorEntry(arr[i]);
if (c != null) {
hasHigher[i] = hasLower[c.getValue()];
}
if (f != null) {
hasLower[i] = hasHigher[f.getValue()];
}
// odd numbered jumps are higher
if (hasHigher[i]) {
count++;
}
map.put(arr[i], i);
}
return count;
}
Another solution is using Stack (next greater/less element).
Non Generic Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public boolean wordPattern(String pattern, String s) {
String[] words = s.split(" ");
if (words.length != pattern.length()) {
return false;
}
// non generic map
// <Object, Object>
Map map = new HashMap<>();
// the type of i must be Integer
// since there's no auto boxing for non generic map integer values
for (Integer i = 0; i < words.length; i++) {
char c = pattern.charAt(i);
String w = words[i];
map.putIfAbsent(c, i);
map.putIfAbsent(w, i);
if (map.get(c) != map.get(w)) {
return false;
}
}
return true;
}
This post is licensed under CC BY 4.0 by the author.