Graph Cycle
Graph Cycle
Acyclic Graph
flowchart LR
A([Acyclic Graph]) --> B{Directed?}
B -->|Yes| C[DAG]
B -->|No| D{Forest}
D --> E{Connected?}
E -->|Yes| F{Tree}
A topological sorting is possible iff the graph is a DAG.
Cyclic Graph
Common graph cycle problems:
- Cycle detection
- Cycle length
Khan’s Algorithm
A directed graph with n
nodes and n
edges. Each node has one and only one outgoing edge. Loops are not allowed.
Maximum Employees to Be Invited to a Meeting
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
public int maximumInvitations(int[] favorite) {
int n = favorite.length;
// Constucts a graph by creating a directed edge i -> favorite[i] for each node
//
// The graph has possibly more than one component.
// Each component is a cycle (length > 1); each node on the cycle can have an "arm" (acyclic nodes)
// Kahn's Algorithm picks out acyclic nodes
int[] indegrees = new int[n];
for (int i = 0; i < n; i++) {
indegrees[favorite[i]]++;
}
// Enqueues leaves
Queue<Integer> q = new LinkedList<>();
boolean[] visited = new boolean[n];
for (int i = 0; i < n; i++) {
if (indegrees[i] == 0) {
visited[i] = true;
q.offer(i);
}
}
// dp[i]: longest path from leaves to i exclusively
int[] dp = new int[n];
while (!q.isEmpty()) {
int node = q.poll(), to = favorite[node];
dp[to] = Math.max(dp[to], dp[node] + 1);
if (--indegrees[to] == 0) {
visited[to] = true;
q.offer(to);
}
}
int count1 = 0; // case 1: cycle length == 2
int count2 = 0; // case 2: cycle length > 2
for (int i = 0; i < n; i++) {
if (!visited[i]) {
// Gets the cycle length
int length = 0;
for (int j = i; !visited[j]; j = favorite[j]) {
visited[j] = true;
length++;
}
if (length == 2) { // Case 1
// The max path of each component is (2 + lengths of the two arms)
// We can put the max paths of all the components along the circular table,
// side by side.
count1 += 2 + dp[i] + dp[favorite[i]];
} else { // Case 2
// Only the on-cycle nodes can be seated on the table
// Arms can't be seated
count2 = Math.max(count2, length);
}
}
}
return Math.max(count1, count2);
}
White-Gray-Black DFS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
private List<Integer>[] graph;
private Color[] color;
private List<Integer> order = new ArrayList<>();
private enum Color {
WHITE, // node is not processed yet
GRAY, // node is being processed
BLACK // node and all its descendants are processed
}
public int[] findOrder(int numCourses, int[][] prerequisites) {
color = new Color[numCourses];
// by default all nodes are WHITE
Arrays.fill(color, Color.WHITE);
graph = new List[numCourses];
for (int i = 0; i < numCourses; i++) {
graph[i] = new ArrayList<>();
}
for (int[] p : prerequisites) {
graph[p[1]].add(p[0]);
}
// dfs unprocessed node
for (int i = 0; i < numCourses; i++) {
if (color[i] == Color.WHITE) {
if (!dfs(i)) {
return new int[0];
}
}
}
Collections.reverse(order);
return order.stream().mapToInt(Integer::valueOf).toArray();
}
// returns false if cycle is detected.
private boolean dfs(int node) {
// starts the recursion
color[node] = Color.GRAY;
for (int neighbor : graph[node]) {
// skips back nodes
// stops if cycle detected
if ((color[neighbor] == Color.WHITE && !dfs(neighbor)) || color[neighbor] == Color.GRAY) {
return false;
}
}
// finishes the recursion
color[node] = Color.BLACK;
order.add(node);
return true;
}
Similar problem in grid: Detect Cycles in 2D Grid
To complete DFS in grid to simulate directed graph, in each DFS path we don’t visit the prev visited cell.
Critical Connections in a Network
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
private List<List<Integer>> graph;
private Set<List<Integer>> set;
public List<List<Integer>> criticalConnections(int n, List<List<Integer>> connections) {
this.graph = new ArrayList<>(n);
for (int i = 0; i < n; i++) {
graph.add(new ArrayList<>());
}
for (List<Integer> e : connections) {
int s1 = e.get(0), s2 = e.get(1);
graph.get(s1).add(s2);
graph.get(s2).add(s1);
}
this.set = new HashSet<>(connections);
// the depth of a node during DFS
int[] rank = new int[n];
Arrays.fill(rank, -2);
dfs(rank, 0, 0);
return new ArrayList<>(set);
}
// returns min depth of all nodes in the subtree
private int dfs(int[] rank, int node, int depth) {
if (rank[node] >= 0) {
return rank[node];
}
rank[node] = depth;
int min = depth;
for (int neighbor: graph.get(node)) {
// skips parent
// here's the reason why rank is initialized with -2, rather than -1:
// if depth == 0, then its child node will be skipped by mistake
if (rank[neighbor] == depth - 1) {
continue;
}
int minSub = dfs(rank, neighbor, depth + 1);
min = Math.min(min, minSub);
// cycle detected
if (minSub <= depth) {
// discards the edge (node, neighbor) in the cycle
set.remove(Arrays.asList(node, neighbor));
set.remove(Arrays.asList(neighbor, node));
}
}
return min;
}
This algorithm is very similar to Tarjan’s Algorithm. The meaning of rank
and dfn/low
is slightly different, but in essence they are closely related.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
node: 0
rank: 0,-2,-2,-2
node: 1
rank: 0,1,-2,-2
node: 2
rank: 0,1,2,-2
neighbor: 0
depth: 2
minSub: 0
rank: 0,1,2,-2
neighbor: 2
depth: 1
minSub: 0
rank: 0,1,2,-2
node: 3
rank: 0,1,2,2
neighbor: 3
depth: 1
minSub: 2
rank: 0,1,2,2
neighbor: 1
depth: 0
minSub: 0
rank: 0,1,2,2
neighbor: 2
depth: 0
minSub: 2
rank: 0,1,2,2
BFS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
private static final int MAX_LEN = 1000;
public int findShortestCycle(int n, int[][] edges) {
List<Integer>[] graph = new List[n];
for (int i = 0; i < n; i++) {
graph[i] = new ArrayList<>();
}
for (int[] e : edges) {
graph[e[0]].add(e[1]);
graph[e[1]].add(e[0]);
}
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
min = Math.min(min, bfs(graph, i));
}
return min > n ? -1 : min;
}
private int bfs(List<Integer>[] graph, int node) {
// distances[i]: distance from node to i
int[] distances = new int[graph.length];
Arrays.fill(distances, MAX_LEN);
distances[node] = 0;
Queue<Integer> q = new LinkedList<>();
q.offer(node);
int min = MAX_LEN;
while (!q.isEmpty()) {
node = q.poll();
for (int child : graph[node]) {
if (distances[child] == MAX_LEN) {
distances[child] = distances[node] + 1;
q.offer(child);
} else if (distances[node] <= distances[child]) {
// this condition ensures each node is processed only once
min = Math.min(min, distances[node] + distances[child] + 1);
}
}
}
return min;
}
This post is licensed under CC BY 4.0 by the author.