Dynamic Programming (Rolling)
Check if There is a Valid Partition For The Array
1
2
3
4
5
6
7
8
9
10
11
12
public boolean validPartition(int[] nums) {
boolean[] dp = {true, false, nums[0] == nums[1], false};
int n = nums.length;
for (int i = 2; i < n; i++) {
boolean two = nums[i] == nums[i - 1];
boolean three = (two && nums[i] == nums[i - 2]) || (nums[i] - 1 == nums[i - 1] && nums[i] - 2 == nums[i - 2]);
// we just need to record the values in 4 cases: i - 2, i - 1, i, i + 1
// so a DP array of size 4 is enough
dp[(i + 1) % 4] = (two && dp[(i - 1) % 4]) || (three && dp[(i - 2) % 4]);
}
return dp[n % 4];
}
Number of People Aware of a Secret
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
private static final int MOD = (int)1e9 + 7;
public int peopleAwareOfSecret(int n, int delay, int forget) {
int[] dp = new int[forget];
dp[0] = 1;
// people who know the secret on the i-th day
int people = 0;
// circular array, sliding window
for (int i = 1; i < n; i++) {
people = ((people + dp[(i - delay + forget) % forget]) % MOD - dp[i % forget] + MOD) % MOD;
dp[i % forget] = people;
}
int sum = 0;
for (int d : dp) {
sum = (sum + d) % MOD;
}
return sum;
}
Number of Distinct Roll Sequences
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
private static final int MOD = (int)1e9 + 7;
public int distinctSequences(int n) {
if (n == 1) {
return 6;
}
// dp[i][j]: number of distinct roll sequences from value j to value i
// the intial array presents the result of the first two rolls
int[][] dp = {{0, 1, 1, 1, 1, 1},
{1, 0, 1, 0, 1, 0},
{1, 1, 0, 1, 1, 0},
{1, 0, 1, 0, 1, 0},
{1, 1, 1, 1, 0, 1},
{1, 0, 0, 0, 1, 0}}, dp1 = new int[6][6];
for (int i = 3; i <= n; i++) {
for (int d = 0; d < 6; d++) {
// (i - 1)th roll
for (int p = 0; p < 6; p++) {
dp1[d][p] = 0;
if (dp[d][p] > 0) {
// (i - 2)th roll
for (int pp = 0; pp < 6; pp++) {
// condition #2
if (d != pp) {
dp1[d][p] = (dp1[d][p] + dp[p][pp]) % MOD;
}
}
}
}
}
// rolling by swapping
int[][] tmp = dp;
dp = dp1;
dp1 = tmp;
}
int sum = 0;
for (int i = 0; i < dp.length; i++) {
for (int j = 0; j < dp[i].length; j++) {
sum = (sum + dp[i][j]) % MOD;
}
}
return sum;
}
This post is licensed under CC BY 4.0 by the author.