Cryptography
Cryptography I
Study notes for Cryptography I (Standord University) on Coursera.
Stream Ciphers
Probability
- Random variable: a function that maps universal set to a subset: \(X: U \rightarrow V\).
- Randomized algorithm: \(y \leftarrow A(m; r) \enspace \text{where} \enspace r \xleftarrow{R} \\{0,1\\}^{n}\) defines a uniform random variable \(y \xleftarrow{R} A(m)\)
- e.g. Encryption with a key: \(A(m; k) = E(k, m)\)
An important property of XOR: \(Y\) is a random variable over \(\\{0,1\\}^n\), \(X \xleftarrow{R} \\{0,1\\}^{n}\), \(X\) and \(Y\) are independent. Then \(Z := Y \oplus X\) is a uniform variable over \(\\{0,1\\}^{n}\).
Perfect Secrecy
- Ciphertext should reveal no information about plaintext
- No ciphertext only attack
- One Time Pad (OTP) has perfect secrecy
- \(\Rightarrow \lvert \mathcal{K} \rvert \ge \lvert \mathcal{M} \rvert\)
Pseudo-Random Generator (PRG)
- \(G: \\{0,1\\}^{s} \rightarrow \\{0,1\\}^{n}, \enspace s \ll n\)
- Expands a seed to a much much larger random looking sequence
- Effectively compuatable by deterministic algorithms
- Weak PRGs: Do not use for crypto
- Linear Congruential Generator
glibc random()
Negligibility
- In practice:
- Non-negligible: scalar \(\epsilon \ge \frac{1}{2^{30}}\)
- Negligible: scalar \(\epsilon \le \frac{1}{2^{80}}\)
- In theory:
- Non-negligible: function \(\exists d: \epsilon(\lambda) \ge \frac{1}{\lambda^{d}}\), infinitely often
- Negligible: function \(\forall d, \lambda \ge \lambda_{d}: \epsilon(\lambda) \le \frac{1}{\lambda^{d}}\)
Stream Cipher
- \(E(k, m) := m \oplus G(k)\)
- \(D(k, c) := c \oplus G(k)\)
- Attacks
- Two time pad (e.g. MS-PPTP)
- Related keys (e.g. 802.11b WEP
PRG(IV || k)
)- Solution:
PRG(PRG(IV || k))
- Solution:
- OTP is malleable (no integrity)
- Real world examples
Advantage
\[Adv_{PRG}[A,G] = \lvert \Pr_{k \xleftarrow{R} \mathcal{k}}[A(G(k)) = 1] - \Pr_{r \xleftarrow{R} \{0,1\}^{n}}[A(r) = 1]\rvert \in [0, 1]\]Secure PRG
- \(\forall\) “eff” statistical tests \(A\), \(Adv_{PRG}[A,G]\) is “neg”.
- Unprovable (\(\Rightarrow P \ne NP\))
- \(\Leftrightarrow\) Unpredictable (\(\Leftarrow\) Yao’s Theorem)
- \(\forall i\), no “eff” adv. can predict bit \((i + 1)\) for “non-neg” \(\epsilon\)
Computationally indistinguishable
(\(P_1 \approxeq_{p} P_2\)): \(\forall\) “eff” statistical tests \(A\),
\[\lvert \Pr_{x \leftarrow P_1}[A(x) = 1] - \Pr_{x \leftarrow P_2}[A(x) = 1]\rvert < neg\]Semantic Security
\[Adv_{SS}[A,\mathbb{E}] := \lvert \Pr[W_0] - \Pr[W_1]\rvert \in [0, 1]\]where \(W_b\) is the event that \(EXP(b) = 1\)
\(\forall\) “eff” \(A\), \(Adv_{SS}[A, \mathbb{E}]\) is “neg”.
Secure PRG \(\Rightarrow\) Semantically secure stream cipher
Block Ciphers
Block Ciphers
Iteration
Key expansion -> Round function (R(k,m)
)
Block size (bits) | Key size (bits) | Number of rounds | Network | Secure? | |
---|---|---|---|---|---|
DES | 64 | 56 | 16 | Feistel | No |
3DES | 64 | 168 | 48 | Feistel | Yes (Heuristic) |
AES | 128 | 128/192/256 | 10/12/14 | Subs-Perm | Yes (Heuristic) |
Considerably slower than stream ciphers.
Pseudo Random Function (PRF) | Pseudo Random Permutation (PRP) | |
---|---|---|
Function | E(k,x) | E(k,x) and D(k,y) |
Invertible? | N/A | Yes, one-to-one |
Deterministic? | N/A | Yes |
PRP \(\subset\) PRF
Secure PRFs
- A random function in \(Funs[X,Y]\) (size = \(\lvert Y \rvert ^ {\lvert X \rvert}\)) is indistinguishable from a random function in \(S_F = \\{ F(k,\cdot) \enspace \text{s.t.} \enspace k \in K\\}\) (size = \(\lvert K \rvert\))
- \[S_F \subseteq Funs[X,Y]\]
- Secure PRF \(\Rightarrow\) Secure PRG
- \(F:K \times \\{0,1\\}^{n} \rightarrow \\{0,1\\}^{n} \enspace G:k \rightarrow \\{0,1\\}^{nt}\), \(G(k) = F(k,0) \parallel F(k,1) \parallel \ldots \parallel F(k,t)\)
- e.g. Deterministic CTR mode
- Parallelizable
Secure PRPs
- PRF Switching Lemma
- \(\lvert Adv_{PRF}[A,E] - Adv_{PRP}[A,E] \rvert \lt q^2/2\lvert X \rvert\), where \(q\) is the number of queries
- If \(\lvert X \rvert\) is sufficiently large, then Secure PRP \(\Rightarrow\) Secure PRF
Feistel Network
- Build invertible function from arbitrary functions
- Used in many block ciphers, but not AES
- Luby-Rackoff Theorem: Secure PRF \(\xrightarrow{\text{3-round Feistel}}\) Secure PRP
DES (Data Encryption Standard)
- Overall Feistel structure
- Key sechedule
- F function
- S-box
- 6 bits -> 4 bits
- 4-to-1 maps: 1 output has 4 preimages
- Nonlinear, otherwise DES is linear (insecure)
Exhausive Search Attacks
- Suppose DES is an ideal cipher:
- \(2^{56}\) (= number of keys) random invertible functions
- \(\forall m,c\), \(\exists\) at most one key \(k \enspace \text{s.t.} \enspace \Pr[c=DES(k,m)] \ge 1 - 2^{56}\frac{1}{2^{64}} = 99.5\%\)
- 3DES
- \(E(k1, D(k2, E(k3, m)))\): not 3 E’s because when \(k1=k2=k3\) we get hardware implementation of normal DES
- Meet-in-the-middle Attack \(\approx 2^{118} > 2^{90}\).
- 2DES
- \[E(k1, E(k2, m))\]
- Meet-in-the-middle Attack
- \(2^{56}\log(2^{56}) + 2^{56}\log(2^{56}) \lt 2^{63} \lll 2^{112}\): build and sort in one way + binary search in the other way
- DESX
- \[k1 \oplus E(k2, m \oplus k3)\]
- Key size = 64 + 56 + 64 = 184 bits
- Meet-in-the-middle Attack \(2^{120}\)
- Vulnerable to more subtle attacks
- \(k1 \oplus E(k2, m)\) and \(E(k2, m \oplus k1)\) are both wrong constructions
More Attacks
- Attacks on the implementation
- Side channel attacks: time, power, …
- Fault attacks: computing errors in the last round exposes the secret key
- Linear and differential attacks
- There’s a dependence between message, ciphertext and the key bits
- 5th S-box of DES it too close to a linear function
- Success probability >= 97.7% given \(1/\epsilon^2\) random \((m,c)\) pairs. For DES:
- \(\epsilon = 1/2^{21}\). Can find 14 key bits this way in time \(2^{42}\)
- The remaining 42 key bits can be found by brute force in \(2^{42}\)
- In total \(2^{43}\)
- Quantum Attacks
- Could solve generic search problem in \(O(\lvert X \rvert^{1/2})\).
AES
- Algorithm
- Key schedule: 11 round keys
- SubBytes
- ShiftRows
- MixColumns
- Hardware
- Intel Westmere
aesenc
,aesenclast
: one round of AES; 128 bit registersaeskeygenassist
: key expansion
- AMD Bulldozer
- Intel Westmere
- Attacks
- Key recovery attack: 4x better than exhaustive search (e.g. 128 bit key -> \(2^{126}\))
- Related key attack: given \(2^{99}\) in/out pairs from 4 related keys AES-256; recovery time: \(\approx 2^{99}\)
GGM (Goldreich-Goldwasser-Micali) PRF
- Secure PRG \(\Rightarrow\) Secure PRF
- Not used in practice due to slow practice
CPA Security
- \(m,c\) pairs; \(q\) queries
- Suppose \(E(k,m)\) always outputs the same ciphertext for msg \(m\), it’s CPA insecure. Solutions:
- Randomized encryption
- CT size = PT size + “# random bits”
- Nonce-based encryption:
(k,n)
pair never used more than once. A nonce can be:- A counter (Stateful)
- A random nonce (Stateless; Nonce space is sufficiently large)
- Randomized encryption
Modes of Operation
- ECB
- Not semantically secure if #blocks > 1
- CBC
- Random IV
- Nonce-based
key = (k,k1)
E(k1,nonce) -> IV
(key,nonce)
pair must be uniquek1 != k
(see CBC1)
- Padding: PKCS#7
- Dummy block if multiple of block size
- Ciphertext stealing can avoid padding
- CTR (Counter Mode)
- Turns a block cipher into stream cipher
- Parallelizable
- Deterministic: One-time Key
- Stream cipher: \(c[i] = m[i] \oplus F(k, i)\), where \(F\) is a PRF
- \(Adv_{SS}[A,E_{DETCTR}] = 2 \cdot Adv_{PRF}[B,F]\)
- Secure PRF \(\Rightarrow\) \(E_{DETCTR}\) is sem. sec.
- Randomized
- \(c[i] = m[i] \oplus F(k, IV + i)\)
- IV is chosen at random for every message
- \(Adv_{CPA}[A,E_{CTR}] \le 2 \cdot Adv_{PRF}[B,F] + 2q^2L/\lvert X \rvert\), where \(q\) = # messages encrypted with \(k\), \(L\) = message length (# blocks).
- CTR is only secure if \(q^2L \ll \lvert X \rvert\)
- Better than CBC
- Nonce-based
- IV = 64 bit nonce + 64 bit counter
graph LR
PRP -- \subseteq --> PRF
PRF -- Feistel --> PRP
sPRP[Secure PRP] -- PRF Switching Lemma --> sPRF[Secure PRF]
sPRF -- Luby-Rackoff Theorem --> sPRP
sPRF -- DETCTR --> sPRG[Secure PRG]
sPRG -- GGM --> sPRF
sPRG --> ssStreamCipher[Sem. sec. Stream Cipher]
Message Integrity
MAC
- Integrity, no confidentiality
- Signing:
S(k,m) -> t
- Verifification:
V(k,m,t) -> 0,1
Secure MACs
- Chosen message attack: given
q
(m,t)
pairs, the attacker:- Cannot produce a valid tag for a new message
- e.g. prevent CCA against Encrypt-then-MAC
- Cannot produce
(m,t')
given(m,t)
- Cannot produce a valid tag for a new message
- Secure PRF \(\Rightarrow\) Secure MAC
S(k,m) := F(k,m)
V(k,m,t) := 1 if t = F(k, m), 0 otherwise
- \(Adv_{MAC}[A,I_F] \le Adv_{PRF}[B,F] + 1/\lvert Y \rvert\)
- \(I_F\) is secure as long as \(\lvert Y \rvert\) is sufficiently large
- Lemma: A MAC is secure if truncated to
w
bits and \(1/2^w\) is still negligible
Small-MAC -> Big-MAC
- CBC-MAC (banking)
- Commonly used as an AES-based MAC
- CCM encryption mode
- CMAC
- Commonly used as an AES-based MAC
- NMAC (Internet protocols)
- Not usually used with AES or 3DES: need to change AES key on every block (re-computing AES key expansion)
- HMAC
Encrypted CBC-MAC (ECBC-MAC)
- \(F: K \times X \rightarrow X\)
- Raw CBC-MAC is not secure: Chosen message attack
- Choose an arbitrary one-block message \(m \in X\)
- Request tag \(t = F(k,m)\)
- Output \(t\) as MAC forgery for the 2-block message \((m, t \oplus m)\)
- \(Adv_{PRF}[A,F_{ECBC}] \le Adv_{PRP}[B,F] + 2q^2/\lvert X \rvert\)
- Secure as long as \(q \ll \lvert X \rvert ^{1/2}\)
NMAC (Nested MAC)
- \(F: K \times X \rightarrow K\)
- NMAC: \(\text{NMAC}_K(x) = F_{k_1}(F_{k_2}(x))\)
- Cascade function is not secure: Chosen message attack
- \(cascade(k,m \parallel w) = F(cascade(m),w)\)
- \(Adv_{PRF}[A,F_{NMAC}] \le q \cdot L \cdot Adv_{PRP}[B,F] + q^2/2\lvert K \rvert\)
- Secure as long as \(q \ll \lvert K \rvert ^{1/2}\)
Extension Property
- For both ECBC-MAC and NMAC, \(\forall x,y,w: F_{BIG}(k,x) = F_{BIG}(k,y) \Rightarrow F_{BIG}(k,x \parallel w) = F_{BIG}(k,y \parallel w)\)
- Attack: Issue \(\lvert Y \rvert^{1/2}\) to find a collision; b-day paradox
- The security bounds are tight
MAC Padding
- Must be invertible
- CBC-MAC: Bit padding
- Dummy block if multiple of block size
CMAC
- NIST SP 800-38B
- 3-key construction
- No final encryption step (extension attack thwarted by last keyed xor)
- No dummy block
- \(Adv_{PRF}[A,F_{PMAC}] \le Adv_{PRF}[B,F] + 2q^2L^2/\lvert X \rvert\)
- Secure as long as \(qL \ll \lvert X \rvert ^{1/2}\)
PMAC (Parallelizable MAC)
- PMAC
- Gray codes \(\gamma_i\) are used to enforce order on message blocks
- Padding similar to CBC-MAC: no need for dummy block
- Incremental (i.e. we can quickly update the tag if one block changes) if PRF is also a PRP
One-time MAC
- Fast
- Example: \(S(key,m) = P_m(k) + a (\mod q)\), where \(P_m(x) = \sum_{i=1}^{L}{m[i]x^i}\), \(key = (k,a) \in \\{1,2,\ldots, q\\}^2\)
Carter-Wegman MAC
- One-time MAC \(\Rightarrow\) Many-time MAC
- Randomized MAC
- \(CW((k1,k2),m) = (r, F(k1,r) \oplus S(k2,m))\)
- CW is a secure MAC if \((S,V)\) is a secure one-time MAC and \(F\) is a secure PRF.
ECBC-MAC | CMAC | NMAC | HMAC | PMAC | Carter-Wegman MAC | |
---|---|---|---|---|---|---|
Property | PRF | PRF | PRF | PRF | PRF | Randomized MAC |
Parallizable? | No | No | No | No | Yes | No |
MACs from Collision Resistance
- \(S^{big}(k,m) = S(k,H(m))\)
- \(V^{big}(k,m,t) = V(k,H(m),t)\)
- \(I^{big}\) is a secure MAC if \(I\) is a secure MAC and \(H\) is collision resistant.
Birthday Paradox
- \(n \approx 1.2\sqrt{B} \Rightarrow \Pr \le 1/2\)
- Generic attack on collision resistant functions: time and space: \(O(2^{n/2})\)
Merkle–Damgård Construction
- Collision resistant: short message -> long message
- Length padding:
10...0 || 64-bit message length
; possible dummy block f
is compression function- If
f
is collision resistant, then so isH
- Block Cipher
- Suppose
E
is an ideal cipher, then it takes \(O(2^{n/2})\) evaluations to find a collision - best possible - \(h(H,m) = E(m,H)\) is not collision resistant -> \(H'=D(m',E(m,H))\)
- Used by all SHA functions, e.g. SHA-256 with SHACAL-2 as the block cipher, and key size (block size) is 512-bit
- Suppose
- 12 variants, e.g. Miyaguchi–Preneel (Whirlpool)
- \(h(H,m) = E(m,H) \oplus m\) is insecure
- Provable
- Deiscrete log
- Slow
- If
HMAC
S(k,m) = H(k || m)
is insecure due to extension attack- Definition
- Similar to NMAC PRF; main difference: k1 and k2 are dependent
- Secure PRF if
- Compression function is a PRF when dependent keys are used
- \(q \ll \lvert T \rvert^{1/2}\)
- TLS: HMAC-SHA1-96 (HMAC doesn’t require compression function to be collision resistant)
- Attacks:
- Verification timing attacks:
==
byte-by-byte comparison and returns false when first inequality found- Defense #1:
res |= ord(x) ^ ord(y); return res == 0
; difficult to ensure due to compiler optimization - Defense #2:
mac = HMAC(k,m); return HMAC(k,mac) == HMAC(k,sig_bytes)
- Defense #1:
- Verification timing attacks:
Authenticated Encryption
Security
- Sem. sec. under a CPA attack, and
- Ciphertext integrity
Chosen Ciphertext Security
- Sem. sec. under Both CPA and CCA
- CBC with random IV does not provide AE, because \(D(k,\cdot)\) never outputs \(\perp\).
- AE \(\Rightarrow\) CCA security
- \(Adv_{CCA}[A,E] \le 2q \cdot Adv_{CI}[B_1,E] + Adv_{CPA}[B_2,E]\)
- Does not prevent replay attacks and side channels
MAC-then-Encrypt | Encrypt-then-MAC | Encrypt-and-MAC | |
---|---|---|---|
Application | SSL | IPSec | SSH |
Secure? | No (CCA) | Yes (AE) | No (CPA; MAC doesn’t provide confidentiality) |
Construction | Rand-CTR or Rand-CBC | Always | N/A |
Note | One-time MAC is sufficient for Rand-CTR | N/A | N/A |
AEAD
1
2
3
4
5
|<--- encrypted --->|
----------------------------------------------
| associated data | encrypted data |
----------------------------------------------
|<--- authenticated --->|
GCM | CCM | EAX | |
---|---|---|---|
Type | Encrypt-then-MAC | MAC-then-Encrypt | Encrypt-then-MAC |
Construction | CTR then CW-MAC | CBC-MAC then CTR | CTR then CMAC |
NIST? | Yes | Yes | No |
Nonce-based? | Yes | Yes | Yes |
AEAD? | Yes | Yes | Yes |
Code size | Large (Non-Intel) | Smaller | Smaller |
Speed | Fast | Slower | Slower |
Note | Intel PCLMULQDQ | Block cipher for MAC & Enc | Block cipher for MAC & Enc |
TLS 1.2
- MAC-then-Encrypt
- Unidirectional keys
- Stateful encryption
- CBC AES-128, HMAC-SHA1
- 4 keys, e.g. \(k_{b->s}=(k_{mac},k_{enc})\)
- Attacks (Prior to TLS 1.1)
- Predictable IV for CBC (chained IV): Not CPA secure; BEAST attack
- Padding oracle: CBC only; CTR doesn’t have padding
- IMAP over TLS: query every 5 min
802.11b WEP
- Attack: CRC is linear
SSH
- Binary Packet Protocol
- Non-atomic decrypt
- Len field decrypted and used before it is authenticated
Key Derivation
- Extract pseudo-random key
k
from source keySK
- Salt: a fixed non-secret string chosen at random
- Expand uniform
k
- \(KDF(k,CTX,L) = \parallel_{i = 0}^{L}F(k,(CTX \parallel i))\)
HKDF
- Extract: \(k \leftarrow HMAC(k=salt,data=SK)\)
Password-Based KDF (PBKDF)
- Deriving keys from passwords:
- Do not use HKDF: passwords have insufficient entropy
- Derived keys will be vulnerable to dictionary attacks
- Slow hash function: \(H^{(c)}(pwd \parallel salt)\)
Deterministic Encryption
- Cannot be CPA secure
- Never encrypts same message twice
- Choose message at random from a large message space
- Message structure ensures uniqueness
- Deterministic CPA security
- CBC with fixed IV is not det. CPA secure
- Synthetic IV (SIV)
- \(E_{det}((k1,k2),m) = E(k2,m;r \leftarrow F(k1,m))\), where \((E,D)\) is CPA-secure and \(F\) is a secure PRF.
- \(E_{det}\) is sem. sec. under det. CPA
- Well suited for messages longer than ana AES block
- Automatically ensures Deterministic Authenciated Encryption (DAE): det. CPA + ciphertext integrity
- In decryption, apply the PRF to the decrypted message and verify it’s identical to the IV
- Secure PRF + CPA-secure CTR -> SIV-CTR provides DAE
- PRP
- sem. sec. under det. CPA
- Good for short messages (< 16 bytes); just use AES
- Wide PRP
- For long messages
- EME: a PRP on \(\\{0,1\\}^N\) for \(N \gg n\), where \(n\) is the size of PRP block
- Secure
- Parallelizable
- 2x slower than SIV
- PRP-based DAE
- Append 0’s to the LSB of the message
- DAE if \(1/2^n\) is negligible, where \(n\) is the count of appended 0’s
Disk encryption
- Sectors on disk are fixed size
- No expansion (\(\lvert M \rvert = \lvert C \rvert\))
- Must use deterministic encryption; no integrity
- Det. CPA secure cipher with (\(\lvert M \rvert = \lvert C \rvert\)) \(\Rightarrow\) PRP
- \(PRP(k_t, sector_t)\)
- \(k_t = PRF(k,t)\)
- Tweakable block ciphers
- Construct many PRPs from a master key
- \(E(k,t,\cdot)\) is invertable; indist. from random
- Construction
- \(E_{tweak}(k,t,x) = E(E(k,t),x)\), where \((E,D)\) is a secure PRP, \(E:K \times X \rightarrow X, K = X\)
2n
evaluations ofE
- XTS (XEX Tweakable Block Cipher with Ciphertext Stealing)
n + 1
evaluations ofE
- It is necessary to encrypt the tweak before using it
- Block-level PRP, not sector-level
- Mac OS X-Lion, TrueCrypt, BestCrypt
- \(E_{tweak}(k,t,x) = E(E(k,t),x)\), where \((E,D)\) is a secure PRP, \(E:K \times X \rightarrow X, K = X\)
Format Preserving Encryption (FPE)
- Build a PRP on \(\\{0,\ldots,s-1\\}\) from a secure PRF \(F:K \times \\{0,1\\}^n \rightarrow \\{0,1\\}^n\), where \(0 \lt s \le 2^n\)
- From \(\\{0,1\\}^n\) to \(\\{0,1\\}^t\), s.t. \(2^{t-1} \lt s \le 2^t\)
- PRP on \(\\{0,\ldots,s-1\\}\)
- Truncate \(F\), \(F': K \times \\{0,1\\}^{t/2} \rightarrow \\{0,1\\}^{t/2}\)
- Patarin (7 rounds) is better than Luby-Rackoff
- Security is the same as Patarin
- From \(\\{0,1\\}^t\) to \(\\{0,\ldots,s-1\\}\)
- Given PRP \((E,D):K \times \\{0,1\\}^t \rightarrow \\{0,1\\}^t\)
- Build \((E',D'): K \times \\{0,\ldots,s-1\\} \rightarrow \\{0,\ldots,s-1\\}\): \(x \in \\{0,\ldots,s-1\\}\). \(y \leftarrow x\), do {\(y \leftarrow E(k,y)\)} until \(y \in \\{0,ldots,s-1\\}\)
- Expected 2 iterations
- Security is tight: \(Adv_{PRP}[A,E] = Adv_{PRP}[B,E']\)
- No integrity
- From \(\\{0,1\\}^n\) to \(\\{0,1\\}^t\), s.t. \(2^{t-1} \lt s \le 2^t\)
Basic Key Exchange
Trusted 3rd Party: simple protocol; replay attack
- Quadratic gap - best possible if ciphers are black box oracle
Diffie-Hellman Protocol
- Overview
- Best known algorithm (GNFS): \(\exp(\tilde{O}(\sqrt[3]{n}))\) (sub-exponential)
- Multi Party Key Agreement
- n = 2: Diffie-Hellman
- n = 3: Joux
- n > 3: open question
Arithmetic Algorithms
For \(n\)-bit integers:
- Addition and subtraction: \(O(n)\)
- Multiplication
- Naive: \(o(n^2)\)
- Karatsuba: \(O(n^{1.585})\); 3 mults
- Best (asymptotic) algorithm: \(\tilde{O}(n\log(n))\); not practical
- Division with remainder: \(O(n^2)\)
- Modualr exponentiation: successive square \(O(n^2\log(n)) \le O(n^3)\)
Public-Key Encrytion
Security
(G,E,D)
- One-time security \(\Rightarrow\) Many-time security (CPA): attacker can encrypt any message with the public key
- IND-CCA
Trapdoor Functions (TDF)
- \(G,F,F^{-1}\)
- \(G() \rightarrow (pk, sk)\)
- \(F(pk,\cdot)\)
- \(F^{-1}(sk,\cdot)\)
- Secure if \(F\) is a one-way function
- Public-key encryption
- \((G,E,D)\): ISO standard
- \(E(pk,m)\): \(x \xleftarrow{R} X\), \(y \leftarrow F(pk,x)\), \(k \leftarrow H(x)\), \(c \leftarrow E_s(k,m)\); output \((y,c)\)
- \(D(sk,(y,c)\): \(x \leftarrow F^{-1}(sk,y)\), \(k \leftarrow H(x)\), \(m \leftarrow D_s(k,c)\); output \(m\)
- Secure TDF + \((E_s,D_s)\) auth. enc. + \(H\) is random oracle \(\Rightarrow (G,E,D)\) is \(CCA^{ro}\) secure
- Never encrypt by applying \(F\) directly to plaintext! (e.g. Textbook RSA)
- Deterministic
- Many attacks exist
1
2
3
4
|<-- header -->|<--- body --->|
---------------------------------------
| F(pk,x) | Es(H(x),m) |
---------------------------------------
RSA Trapdoor Permutation
- \(G()\): \(p,q \approx 1024\) bits, \(N = pq\), \(e \cdot d \equiv 1 \pmod{\varphi(N)})\); output \(pk = (N,e)\), \(sk = (N,d)\)
- \(F(pk,x) = RSA(x) \equiv x^e \pmod{N}\)
- \(F^{-1}(sk,x) \equiv y^d \pmod{N}\)
- Attacks on textbook RSA
- Exhausive search: if \(k = k_1 \cdot k_2\) (prob. \(\approx\) 20%), \(c/k_1^e \equiv k_2^e \pmod{N}\)
PKCS #1
- ISO standard is not often used
- E.g. preprocess a symmetric key \(k\) to 2048 bit then use RSA() to encrypt it
- PKCS1 v1.5
- Bleichenbacher Attack
- Test if the 16 MSBs of plaintext =
02
- \(c' \leftarrow r^e \cdot c = (r \cdot PKCS1(m))^e\)
- HTTPS Defense (RFC 5246): return a random string
R
of 46 bytes if decryption fails
- Test if the 16 MSBs of plaintext =
- Bleichenbacher Attack
- PKCS1 v2.0: OAEP
- Check pad on decryption
- RSA is trapdoor permutation + MGFs are random oracles \(\Rightarrow\) RSA-OAEP is CCA secure
- The theorem is false if you use general trapdoor permutation
- OAEP+
- General trapdoor permutation
- During decryption validate \(W(m,r)\) field
- SAEP+
- RSA \(e = 3\)
- One MGF
- During decryption validate \(W(m,r)\) field
RSA One-Way Function
- Best known algorithm to compute e’th roots modulo \(N\)
- Step 1: factor \(N\) (hard)
- Step 2: compute e’th roots modulo \(p\) and \(q\) (easy)
- Reduction: efficient algorithm for e’th roots mod \(N\) \(\Rightarrow\) efficient algorithm for factoring \(N\)
- Unknown
- \(e = 2 \Rightarrow\) factoring \(N\), however, it can’t be used in RSA
- Caveats
- Wiener: if \(d < N^{0.25}\), then RSA is insecure
- \(\lvert e/N - k/d \rvert \le 1/2d^2\): difference is so small
- Continued fraction algorithm to find \(k/d\); \(e \cdot d \equiv 1 \pmod{k} \Rightarrow \gcd(k,d) = 1\)
- BD: if \(d < N^{0.292}\), then RSA is insecure. (Conjecture: \(d < N^{0.5}\))
- Wiener: if \(d < N^{0.25}\), then RSA is insecure
RSA in Practice
- Use a small \(e\) to speed up RSA encryption
- Minimum value: \(e = 3\)
- Recommened: \(e = 65537 = 2^{16} + 1\)
- Asymmetry of RSA
- Fast enc./slow dec.: 10~30:1
- RSA-CRT: 4x dec., but still much slower than enc.
- Attacks
- Timing attack (Kocher 97)
- Power attack (Kocher 99)
- Faults attack (BDL 97)
- Defence: always check output (10% slowdown)
- Low entropy at RSA key generation
ElGamal Public-key System
(Gen,E,D)
- KeyGen: \(g \xleftarrow{R} G\), \(a \xleftarrow{R} [0,n)\); output \(sk=a\), \(pk=(g,h=g^a)\)
- \(E(pk=(g,h),m)\): \(b \xleftarrow{R} [0,n)\), \(u \leftarrow g^b\), \(v \leftarrow h^b\), \(k \leftarrow H(u,v)\), \(c \leftarrow E_s(k,m)\); output \((u,c)\)
- 2 exp. (fixed basis)
- Can pre-compute (3x speed-up)
- \(D(sk=a,(u,c))\): \(v \leftarrow u^a\), \(k \leftarrow H(u,v)\), \(m \leftarrow D_s(k,c)\); output \(m\)
- 1 exp. (variable basis)
1
2
3
4
|<- header ->|<--- body --->|
-------------------------------------
| u | Es(H(x),m) |
-------------------------------------
ElGamal Security
- Computational Diffie-Hellman (CDH) Assumption
- \(\Pr[A(g,g^a,g^b) = g^{ab}] < negligible\)
- Hash Diffie-Hellman (HDH) Assumption
- \((g,g^a,g^b,H(g^b,g^{ab})) \approx_{p} (g,g^a,g^b,R)\)
- Slightly stronger: CDH is easy in \(G \Rightarrow\) HDH is easy in \((G,H) \enspace \forall H, \lvert Im(H) \rvert \ge 2\)
- ElGamal is sem. sec. under HDH
- Interactive Diffie-Hellman (IDH)
- Stronger; needed to prove CCA security
- Adv. can query \(u_1,v_1\) and Chal. returns 1 if \((u_1)^a=v_1\)
- IDH + \((E_s,D_s)\) auth. enc. + \(H\) random oracle \(\Rightarrow\) ElGamal is \(CCA^{ro}\) secure
- Prove CCA security based on CDH?
- Option 1: use group \(G\) where CDH = IDH (e.g. bilinear group)
- Option 2: twin ElGamal
- KeyGen: \(g \xleftarrow{R} G\), \(a1,a2 \xleftarrow{R} [0,n)\); output \(sk=(a1,a2), pk=(g,h_1=g^{a1},h_2=g^{a2})\)
- \(E(pk=(g,h_1,h_2),m)\): \(b \xleftarrow{R} [0,n)\), \(k \leftarrow H(g^b,h_1^b,h_2^b)\), \(c \leftarrow E_s(k,m)\); output \((u=g^b,c)\)
- \(D(sk=(a1,a2),(u,c))\): \(k \leftarrow H(u,u^{a1},u^{a2})\), \(m \leftarrow D_s(k,c)\); output \(m\)
- CDH + \((E_s,D_s)\) auth. enc. + \(H\) random oracle \(\Rightarrow\) twin ElGamal is \(CCA^{ro}\) secure
- Cost: one more exp. during enc./dec.
- No one knows if it is worth it…
- Prove CCA security without random oracles
- Option 1: use HDH in bilinear groups
- Option 2: use Decision-DH assumption in any group