Combinatorics
Permutations
\[{n \choose m_{1},m_{2},\ldots ,m_{l}}={\frac {n!}{m_{1}!\,m_{2}!\,\cdots \,m_{l}!}}=\frac {\left(\sum_{i=1}^{l}{m_{i}}\right)!}{\prod_{i=1}^{l}{m_{i}!}}\]Probability of a Two Boxes Having The Same Number of Distinct Balls
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
private int n;
private long[] f;
public double getProbability(int[] balls) {
int k = balls.length;
this.n = Arrays.stream(balls).sum() / 2;
this.f = new long[n + 1];
f[0] = 1;
for (int i = 1; i <= n; i++) {
f[i] = f[i - 1] * i;
}
double[] good = new double[]{0}, all = new double[]{0};
backtrack(balls, 0, new int[k], new int[k], good, all);
return good[0] / all[0];
}
private void backtrack(int[] balls, int index, int[] box1, int[] box2, double[] good, double[] all) {
if (index == balls.length) {
// sum1 == sum2
if (Arrays.stream(box1).sum() == n) {
double p = (double)permutation(box1) * (double)permutation(box2);
all[0] += p;
long count1 = Arrays.stream(box1).filter(b -> b > 0).count();
long count2 = Arrays.stream(box2).filter(b -> b > 0).count();
good[0] += count1 == count2 ? p : 0;
}
return;
}
for (int i = 0; i <= balls[index]; i++) {
box1[index] = i;
box2[index] = balls[index] - i;
backtrack(balls, index + 1, box1, box2, good, all);
box1[index] = box2[index] = 0;
}
}
private long permutation(int[] arr) {
// permutations of multisets
long prod = Arrays.stream(arr)
.mapToLong(i -> f[i])
.reduce(1, (a, b) -> a * b);
return f[n] / prod;
}
De Bruijn Sequence
de Bruijn Sequence: de Bruijn sequence of order n
on a size-k
alphabet A
is a cyclic sequence in which every possible length-n
string on A
occurs exactly once as a substring (i.e., as a contiguous subsequence)
The de Bruijn sequences can be constructed by taking a Hamiltonian path of an n
-dimensional de Bruijn graph over k
symbols (or equivalently, an Eulerian cycle of an (n − 1)
-dimensional de Bruijn graph).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
public String crackSafe(int n, int k) {
StringBuilder sb = new StringBuilder("0".repeat(n));
Set<String> visited = new HashSet<>();
visited.add(sb.toString());
backtrack(sb, visited, (int)Math.pow(k, n), n, k);
return sb.toString();
}
private boolean backtrack(StringBuilder sb, Set<String> visited, int target, int n, int k) {
if (visited.size() == target) {
return true;
}
// last (n - 1) digits
String lastDigits = sb.substring(sb.length() - n + 1);
for (char ch = '0'; ch < '0' + k; ch++) {
String password = lastDigits + ch;
if (visited.add(password)) {
sb.append(ch);
if (backtrack(sb, visited, target, n, k)) {
return true;
}
visited.remove(password);
sb.deleteCharAt(sb.length() - 1);
}
}
return false;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
public long appealSum(String s) {
int[] last = new int[26];
Arrays.fill(last, -1);
int n = s.length();
long count = 0;
for (int i = 0; i < n; i++) {
// the char at i appears in (i + 1) * (n - i)
// also needs to subtract the duplicates: (last[ch] + 1) * (n - i)
count += (i - last[s.charAt(i) - 'a']) * (n - i);
last[s.charAt(i) - 'a'] = i;
}
return count;
}
Combinations
1
2
3
4
public int countVowelStrings(int n) {
// comb(n + 4, 4)
return (n + 4) * (n + 3) * (n + 2) * (n + 1) / 24;
}
Number of Sets of K Non-Overlapping Line Segments
Equivalent to: n + k - 1
points, k
segments, not allowed to share endpoints.
For example, n = 4, k = 2
Number of k-combinations
\[\binom {n}{k}=\prod _{i=1}^{k}{\frac {n+1-i}{i}}\] \[{\binom {n}{k}}={\binom {n-1}{k-1}}+{\binom {n-1}{k}}\]1
2
3
4
5
6
7
8
9
10
long[][] choose = new long[n][k];
for (int i = 0; i < choose.length; i++) {
choose[i][0] = 1;
}
for (int i = 1; i < choose.length; i++) {
for (int j = 1; j < choose[0].length; j++) {
choose[i][j] = (choose[i - 1][j - 1] + choose[i - 1][j]) % mod;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public String kthSmallestPath(int[] destination, int k) {
int row = destination[0], col = destination[1];
StringBuilder sb = new StringBuilder();
int down = row;
for (int i = 0; i < row + col; i++) {
int count = choose[row + col - (i + 1)][down];
// goes right
if (count >= k) {
sb.append("H");
} else {
// goes down
down--;
k -= count;
sb.append("V");
}
}
return sb.toString();
}
Indistinguishable Objects, Distinguishable Bins
Stars and Bars
Theorem one
Positivity: Place \(n\) objects into \(k\) bins, such that all bins contain at least one object.
\[\binom {n-1}{k-1}\]Count the Number of Ideal Arrays
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
private static final int MOD = (int)1e9 + 7;
// the max length of each array is 14, since 2 ^ 14 = 16384 > 10 ^ 4 (see comments for dp)
private static final int MAX_NUM_UNIQUE = 14;
public int idealArrays(int n, int maxValue) {
// {element, divisors (not including the key itself)}
Map<Integer, List<Integer>> map = new HashMap<>();
for (int i = 1; i <= maxValue; i++) {
for (int j = 2 * i; j <= maxValue; j += i) {
map.computeIfAbsent(j, k -> new ArrayList<>()).add(i);
}
}
// dp[i][j]: num of ideal arrays of length i ending with value j,
// where each array doesn't contain duplicate numbers (strictly increasing)
// this is a special case of the original problem, e.g. [1, 2, 4, 8], [3, 6, 12]
// arr[i] % arr[i - 1] == 0
long[][] dp = new long[MAX_NUM_UNIQUE + 1][maxValue + 1];
Arrays.fill(dp[1], 1);
// for the strictly increasing ideal arrays case
for (int i = 2; i <= Math.min(n, MAX_NUM_UNIQUE); i++) {
for (int j = 1; j <= maxValue; j++) {
for (int k : map.getOrDefault(j, Collections.emptyList())) {
dp[i][j] += dp[i - 1][k];
dp[i][j] %= MOD;
}
}
}
// dp[i][0]: total number of strictly increasing ideal arrays of length i
dp[1][0] = 0;
for (int i = 1; i <= Math.min(n, MAX_NUM_UNIQUE); i++) {
for (int j = 1; j <= maxValue; j++) {
dp[i][0] = (dp[i][0] + dp[i][j]) % MOD;
}
}
// n choose k
int[][] choose = new int[n + 1][MAX_NUM_UNIQUE + 1];
for (int i = 0; i < choose.length; i++) {
choose[i][0] = 1;
}
for (int i = 1; i < choose.length; i++) {
for (int j = 1; j < choose[0].length; j++) {
choose[i][j] = (choose[i - 1][j - 1] + choose[i - 1][j]) % MOD;
}
}
// solves the original problem with starts and bars (Theorem one)
int count = 0;
for (int i = 1; i <= Math.min(n, MAX_NUM_UNIQUE); i++) {
// e.g. [1, 2, 4], n = 5, len = 3
// -> 1 1 | 2 | 4 4
count += choose[n - 1][i - 1] * dp[i][0] % MOD;
count %= MOD;
}
return count;
}
Theorem two
Number of combinations with repetition
Non-negativity: Place \(n\) objects into \(k\) bins. Some bins can be empty.
\[\left({\binom {k}{n}}\right)={\binom {n+k-1}{n}}\]Distinguishable Objects, Indistinguishable Bins
Stirling numbers of the second kind: the number of ways to partition a set of n objects into k non-empty subsets.
\[S(n,k)={\frac {1}{k!}}\sum _{i=0}^{k}(-1)^{i}{\binom {k}{i}}(k-i)^{n}\]Count Ways to Distribute Candies
1
2
3
4
5
6
7
8
9
10
11
12
13
14
private static final int MOD = (int)1e9 + 7;
public int waysToDistribute(int n, int k) {
long[][] dp = new long[k + 1][n + 1];
for (int i = 1; i <= k; i++) {
dp[i][i] = 1;
for (int j = i + 1; j <= n; j++) {
dp[i][j] = (dp[i - 1][j - 1] + (dp[i][j - 1] * i) % MOD) % MOD;
}
}
return (int)dp[k][n];
}