Post

BFS

BFS

Fundamentals

Level traversal. The most common data structure used is Queue. Two rolling Lists or Sets (de-dupe) can also be used, but less common.

Smallest Greater Multiple Made of Two Digits

Implicit BFS

No complex data structure is used.

Jump Game II

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public int jump(int[] nums) {
    int jumps = 0;
    // curr: the farthest start index on the current level.
    //   in other words, [0, curr] can already be reached by previous levels.
    //   if start index is greater than `curr`, we should increment the level.
    // next: the farthest end index where points on the current level can jump to.
    for (int i = 0, curr = 0, next = 0; i < nums.length; i++) {
        // if nums[n - 1] is not always reachable
        // (can be commented out for this specific problem)
        if (i > next) {
            return -1;
        }

        if (i > curr) {
            jumps++;
            curr = next;
        }
        next = Math.max(next, i + nums[i]);
    }
    return jumps;
}

Depending on the definition of nums[i], the code might need slight modification. e.g., if nums[i] means the farthest reach of each jump, then:

1
next = Math.max(next, i + nums[i]);

should be changed to:

1
next = Math.max(next, nums[i]);

Priority Queue

Trapping Rain Water II

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};

public int trapRainWater(int[][] heightMap) {
    int m = heightMap.length, n = heightMap[0].length;

    Queue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[2]));
    boolean[][] visited = new boolean[m][n];

    // enqueues border cells
    for (int i = 0; i < m; i++) {
        pq.offer(new int[] {i, 0, heightMap[i][0]});
        pq.offer(new int[] {i, n - 1, heightMap[i][n - 1]});
        visited[i][0] = visited[i][n - 1] = true;
    }
    for (int j = 1; j < n - 1; j++) {
        pq.offer(new int[] {0, j, heightMap[0][j]});
        pq.offer(new int[] {m - 1, j, heightMap[m - 1][j]});
        visited[0][j] = visited[m - 1][j] = true;
    }

    int volume = 0;
    while (!pq.isEmpty()) {
        // picks the cell with lowest height
        int[] cell = pq.poll();
        for (int[] d : DIRECTIONS) {
            int i = cell[0] + d[0], j = cell[1] + d[1];
            if (i >= 0 && i < m && j >= 0 && j < n && !visited[i][j]) {
                // if the neighbor is higher,
                // computes the amount of water the current can trap by comparing its height with its neighbors'
                // then enqueues the neighbor
                volume += Math.max(0, cell[2] - heightMap[i][j]);

                // if the neighbor is lower, fills the neighbor with the cell's height
                // enqueues the neighbor and now it becomes a new border cell
                pq.offer(new int[] {i, j, Math.max(heightMap[i][j], cell[2])});

                // there might be more than one {i, j, _} nodes in the queue
                // but their neighbors won't be processed more than once with the help of `visited` array
                visited[i][j] = true;
            }
        }
    }
    return volume;
}

In fact, this problem can be solved with Dijkstra’s algorithm, too.

Set

Minimum Reverse Operations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
public int[] minReverseOperations(int n, int p, int[] banned, int k) {
    int[] ans = new int[n];
    Arrays.fill(ans, -1);
    ans[p] = 0;

    Set<Integer> banSet = Arrays.stream(banned).mapToObj(Integer::valueOf).collect(Collectors.toSet());
    // sets of unvisited positions
    TreeSet<Integer> even = new TreeSet<>(), odd = new TreeSet<>();
    for (int i = 0; i < n; i++) {
        if (i != p && !banSet.contains(i)) {
            (i % 2 == 0 ? even : odd).add(i);
        }
    }

    // BFS
    Queue<Integer> q = new LinkedList<>();
    q.offer(p);
    while (!q.isEmpty()) {
        int index = q.poll();

        // given k, the parity of the next position of a specific index is certain
        var set = (k ^ index) % 2 == 0 ? odd : even;

        int[] range = getRange(n, index, k);
        var sub = set.subSet(range[0], true, range[1], true);
        for (var i : sub) {
            ans[i] = ans[index] + 1;
            q.offer(i);
        }
        sub.clear();
    }
    return ans;
}

private int[] getRange(int n, int index, int k) {
    // left most candidate subarray
    int l1 = Math.max(0, index - k + 1);
    int r1 = l1 + k - 1;

    // right most candidate subarray
    int r2 = Math.min(n - 1, index + k - 1);
    int l2 = r2 - k + 1;

    // r[0] and index are symmetric about the center of [l1, l1]
    // r[1] and index are symmetric about the center of [l2, l2]
    return new int[]{l1 + r1 - index, l2 + r2 - index};
}

Composite Vertex

Minimum Jumps to Reach Home

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
public int minimumJumps(int[] forbidden, int a, int b, int x) {
    // as per Bezout's Identity
    // if the bug can reach a position, it must be a multiple of gcd(a, b)
    // we use an integer to hold two dimensions: position and direction
    // since the bug never jumps to negative positions
    // we use + to denote "forward", and - to denote "backward"
    Set<Integer> visited = new HashSet<>();
    // boundary is max(max(forbidden) + a + b, x)
    int furthest = x;
    for (int p : forbidden) {
        visited.add(p);  // forward
        visited.add(-p);  // backward
        furthest = Math.max(furthest, p);
    }
    furthest += a + b;

    // position, direction (0: forward, 1: backward)
    int[] node = {0, 0};
    Queue<int[]> q = new LinkedList<>();
    q.offer(node);
    visited.add(0);

    int jumps = 0;
    while (!q.isEmpty()) {
        for (int i = q.size(); i > 0; i--) {
            node = q.poll();
            if (node[0] == x) {
                return jumps;
            }

            int forward = node[0] + a;
            if (forward <= furthest && visited.add(forward)) {
                q.offer(new int[]{forward, 0});
            }

            int backward = node[0] - b;
            if (node[1] == 0 && backward >= 0 && visited.add(-backward)) {
                q.offer(new int[]{backward, 1});
            }
        }
        jumps++;
    }
    return -1;
}

The proof of the max boundary can be found at here. Credits to @newhar.

proof

Minimum Moves to Reach Target with Rotations

1
2
3
4
5
6
7
// {i, j, orientation (horizontal: 0, vertical: 1)}
Queue<int[]> q = new LinkedList<>();
int[] node = {0, 0, 0};
q.offer(node);

boolean[][][] visited = new boolean[n][n][2];
visited[0][0][0] = true;

Shortest Path in a Grid with Obstacles Elimination

1
2
3
4
5
6
7
// {i, j, number of eliminated obstacles}
Queue<int[]> q = new LinkedList<>();
int[] node = new int[]{0, 0, 0};
q.offer(node);

boolean[][][] visited = new boolean[m][n][k + 1];
visited[0][0][0] = true;

Shortest Path to Get All Keys

1
// {i, j, key mask}

Encode the layout as a String.

Sliding Puzzle

Nested List Weight Sum II

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public int depthSumInverse(List<NestedInteger> nestedList) {
    Queue<NestedInteger> q = new LinkedList<>(nestedList);
    int runningSum = 0, sum = 0;
    while (!q.isEmpty()) {
       for (int i = q.size(); i > 0; i--) {
           NestedInteger ni = q.poll();
           if (ni.isInteger()) {
               runningSum += ni.getInteger();
           } else {
               q.addAll(ni.getList());
           }
       }
       sum += runningSum;
    }
    return sum;
}

Memoization

Shortest Path with Alternating Colors

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
public int[] shortestAlternatingPaths(int n, int[][] redEdges, int[][] blueEdges) {
    // red: 0, blue: 1
    List<List<Integer>>[] graph = new ArrayList[2];

    for (int i = 0; i < graph.length; i++) {
        graph[i] = new ArrayList<>();
    }
    for (var list : graph) {
        for (int i = 0; i < n; i++) {
            list.add(new ArrayList<>());
        }
    }

    for (int[] r : redEdges) {
        graph[0].get(r[0]).add(r[1]);
    }
    for (int[] b : blueEdges) {
        graph[1].get(b[0]).add(b[1]);
    }

    int max = 2 * n;
    // distance[i][j]: shortest path from 0 to j ending with i-color edge
    int[][] distance = new int[2][n];
    // distance[][0] == 0
    // maximum distance == 2 * n - 3
    // it happens when in a path from 0 to target,
    // all the intermediate nodes (excluding 0 and target) have an additional self-edge
    for (int i = 1; i < n; i++) {
        distance[0][i] = max;
        distance[1][i] = max;
    }

    Queue<int[]> q = new LinkedList<>();
    // {node, color}
    q.offer(new int[]{0, 0});
    q.offer(new int[]{0, 1});

    while (!q.isEmpty()) {
        int[] node = q.poll();
        int color = node[1];

        for (int neighbor : graph[1 - color].get(node[0])) {
            if (distance[1 - color][neighbor] == max) {
                distance[1 - color][neighbor] = distance[color][node[0]] + 1;
                q.offer(new int[]{neighbor, 1 - color});
            }
        }
    }

    int[] answer = new int[n];
    for (int i = 0; i < n; i++) {
        int p = Math.min(distance[0][i], distance[1][i]);
        answer[i] = p == max ? -1 : p;
    }
    return answer;
}

Variants

In the following “maze” model, the neighbors of a node is not adjacent to it.

The Maze

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};

public boolean hasPath(int[][] maze, int[] start, int[] destination) {
    int m = maze.length, n = maze[0].length;

    // stores "stop points"
    Queue<int[]> q = new LinkedList<>();
    q.offer(start);

    boolean[][] visited = new boolean[m][n];
    visited[start[0]][start[1]] = true;

    while (!q.isEmpty()) {
        int[] p = q.poll();
        // stops AT destination
        if (p[0] == destination[0] && p[1] == destination[1]) {
            return true;
        }

        for (int[] d: DIRECTIONS) {
            int r = p[0] + d[0], c = p[1] + d[1];
            // keeps rolling until hitting a wall 
            while (r >= 0 && c >= 0 && r < m && c < n && maze[r][c] == 0) {
                r += d[0];
                c += d[1];
            }
            r -= d[0];
            c -= d[1];

            if (!visited[r][c]) {
                q.offer(new int[]{r, c});
                visited[r][c] = true;
            }
        }
    }
    return false;
}

The Maze II

1
boolean[][] visited -> int[][] distance

Pruning

Minimum Knight Moves

Symmetry: x -> |x|, y -> |y|

K-Similar Strings

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
private List<String> getNeighbors(String source, String target) {
    // finds an index i where source[i] != target[i]
    char[] arr = source.toCharArray();
    int n = arr.length, i = 0;
    while (i < n) {
        if (arr[i] != target.charAt(i)) {
            break;
        }
        i++;
    }

    // finds all index j where source[j] == target[i]
    // in this case, swapping i and j makes source and target closer
    List<String> list = new ArrayList<>();
    for (int j = i + 1; j < n; j++) {
        if (arr[j] == target.charAt(i)) {
            swap(arr, i, j);
            list.add(new String(arr));
            swap(arr, i, j);
        }
    }
    return list;
}

Multi-source BFS

Vertex values are updated layer by layer from sources (Expanding)

Rotting Oranges

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};

public int orangesRotting(int[][] grid) {
    int fresh = 0, time = 0;
    for (int i = 0; i < grid.length; i++) {
        for (int j = 0; j < grid[i].length; j++) {
            if (grid[i][j] == 1) {
                fresh++;
            }
        }
    }

    int prev = fresh;
    while (fresh > 0) {
        for (int i = 0; i < grid.length; i++) {
            for (int j = 0; j < grid[i].length; j++) {
                // oranges that got rotten yesterday
                if (grid[i][j] == time + 2) {
                    for (int[] d : DIRECTIONS) {
                        fresh -= rot(grid, i + d[0], j + d[1], time);
                    }
                }
            }
        }

        if (fresh == prev) {
            return -1;
        }

        time++;
        prev = fresh;
    }

    return time;
}

private int rot(int[][] grid, int i, int j, int time) {
    if (i < 0 || i >= grid.length || j < 0 || j >= grid[i].length || grid[i][j] != 1) {
        return 0;
    }

    grid[i][j] = time + 3;
    return 1;
}

Map of Highest Peak

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};

public int[][] highestPeak(int[][] isWater) {
    int m = isWater.length, n = isWater[0].length;
    // enqueues all sources
    Queue<int[]> q = new LinkedList<>();
    int[][] height = new int[m][n];
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (isWater[i][j] == 1) {
                height[i][j] = 0;
                q.offer(new int[]{i, j});
            } else {
                height[i][j] = -1;
            }
        }
    }

    while (!q.isEmpty()) {
        int[] cell = q.poll();
        int r = cell[0], c = cell[1];
        for (int[] d : DIRECTIONS) {
            int nr = r + d[0], nc = c + d[1];
            if (nr >= 0 && nr < m && nc >= 0 && nc < n && height[nr][nc] == -1) {
                height[nr][nc] = height[r][c] + 1;
                q.offer(new int[]{nr, nc});
            }
        }
    }
    return height;
}

In the following two problems, BFS starts from gates/buildings/… to empty places. In most cases, it’s optimal because we can use memoization.

Walls and Gates

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
private static final int[][] DIRECTIONS = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};

public void wallsAndGates(int[][] rooms) {
    int m = rooms.length, n = rooms[0].length;
    Queue<int[]> q = new LinkedList<>();
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (rooms[i][j] == 0) {
                q.offer(new int[]{i, j});
            }
        }
    }

    while (!q.isEmpty()) {
        int[] p = q.poll();
        int r = p[0], c = p[1];
        for (int[] d : DIRECTIONS) {
            int i = r + d[0], j = c + d[1];
            if (i >= 0 && i < m && j >= 0 && j < n && rooms[i][j] == Integer.MAX_VALUE) {
                // each gate only checks the areas within 1 space
                // then these emptry rooms are marked and enqueued, so on and so forth.
                // it's like a few water waves expanding
                rooms[i][j] = rooms[r][c] + 1;
                q.offer(new int[]{i, j});
            }
        }
    }
}

Shortest Distance from All Buildings

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
private static final int[][] DIRECTIONS = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

public int shortestDistance(int[][] grid) {
    int m = grid.length, n = grid[0].length, buildingCount = 0;

    // distances[i][j]: total distances to this empty land
    // buildings[i][j]: total buildings to this empty land
    int[][] distances = new int[m][n], buildings = new int[m][n];

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            // from each building to empty lands
            if (grid[i][j] == 1) {
                buildingCount++;

                // BFS
                Queue<int[]> q = new LinkedList<>();
                int[] node = new int[]{i, j};
                q.offer(node);

                boolean[][] visited = new boolean[m][n];
                visited[i][j] = true;

                int steps = 0;
                while (!q.isEmpty()) {
                    for (int k = q.size(); k > 0; k--) {
                        node = q.poll();
                        int r0 = node[0], c0 = node[1];

                        if (grid[r0][c0] == 0) {
                            distances[r0][c0] += steps;
                            buildings[r0][c0]++;
                        }

                        // traverses the next cells which are not blockages.
                        for (int[] d : DIRECTIONS) {
                            int r = r0 + d[0], c = c0 + d[1];
                            if (r >= 0 && c >= 0 && r < m && c < n && !visited[r][c] && grid[r][c] == 0) {
                                visited[r][c] = true;
                                q.offer(new int[]{r, c});
                            }
                        }
                    }
                    steps++;
                }
            }
        }
    }

    // checks all empty lands with buildings count == buildingCount
    int min = Integer.MAX_VALUE;
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (buildings[i][j] == buildingCount) {
                min = Math.min(min, distances[i][j]);
            }
        }
    }

    return min == Integer.MAX_VALUE ? -1 : min;
}

Bidirectional BFS

Word Ladder

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
    if (!wordList.contains(endWord)) {
        return 0;
    }

    Set<String> dict = new HashSet<>(wordList);
    Set<String> beginSet = new HashSet<>(), endSet = new HashSet<>();
    beginSet.add(beginWord);
    endSet.add(endWord);

    int len = 1;
    Set<String> visited = new HashSet<>();

    // in each iteration, builds up the elements in beginSet
    while (!beginSet.isEmpty() && !endSet.isEmpty()) {
        // always makes beginSet the smaller one by swapping
        if (beginSet.size() > endSet.size()) {
            Set<String> tmp = beginSet;
            beginSet = endSet;
            endSet = tmp;
        }

        Set<String> set = new HashSet<>();  // next level of beginSet
        for (String word : beginSet) {
            char[] chs = word.toCharArray();

            for (int i = 0; i < chs.length; i++) {
                for (char c = 'a'; c <= 'z'; c++) {
                    char old = chs[i];
                    chs[i] = c;
                    String target = String.valueOf(chs);

                    // target is already visited in the other set
                    if (endSet.contains(target)) {
                        return len + 1;
                    }

                    if (!visited.contains(target) && dict.contains(target)) {
                        set.add(target);
                        visited.add(target);
                    }
                    chs[i] = old;
                }
            }
        }

        beginSet = set;
        len++;
    }

    return 0;
}

+ Algorithms/Data Structures

+ Priority Queue

Cut Off Trees for Golf Event

+ BFS

Second Minimum Time to Reach Destination

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
private static final int MAX_NUM_NODES = (int)1e4;

public int secondMinimum(int n, int[][] edges, int time, int change) {
    List<Integer>[] graph = new List[n + 1];
    for (int i = 0; i <= n; i++) {
        graph[i] = new ArrayList<>();
    }
    for (int[] e : edges) {
        graph[e[0]].add(e[1]);
        graph[e[1]].add(e[0]);
    }

    // minSteps[i]: minimum steps from vertex i to vertex n
    int[] minSteps = new int[n + 1];
    Arrays.fill(minSteps, MAX_NUM_NODES + 1);
    int node = n;
    minSteps[node] = 0;

    // first BFS
    Queue<Integer> q = new LinkedList<>();
    q.offer(node);
    while (!q.isEmpty()) {
        node = q.poll();
        for (int neighbor : graph[node]) {
            if (minSteps[neighbor] == MAX_NUM_NODES + 1) {
                minSteps[neighbor] = minSteps[node] + 1;
                q.offer(neighbor);
            }
        }
    }

    // if the minimum number of steps from 1 to n is k
    // then the second minimum time is either:
    // k + 2 (goes back-and-forth once) or
    // k + 1 (takes a detour)

    // second BFS
    int steps = minSteps[node = 1] + 2;
    q.offer(node);
    while (!q.isEmpty()) {
        node = q.poll();
        for (int neighbor : graph[node]) {
            // there exists a detour
            if (minSteps[neighbor] == minSteps[node]) {
                return calculateTime(steps - 1, time, change);
            }

            // pruning: enqueues only the neighbors that are on the shortest path from current node to n
            // in fact, there are only 3 possibilities:
            // 1.  minSteps[neighbor] == minSteps[node]
            // 2.  minSteps[neighbor] == minSteps[node] - 1
            // 3.  minSteps[neighbor] == minSteps[node] + 1
            if (minSteps[neighbor] == minSteps[node] - 1) {
                q.offer(neighbor);
            }
        }
    }
    return calculateTime(steps, time, change);
}

private int calculateTime(int steps, int time, int change) {
    int total = 0;
    while (steps-- > 0) {
        // traffic light switches (to red), waits another change
        if ((total / change) % 2 == 1) {
            total = (total / change + 1) * change;
        }
        total += time;
    }
    return total;
}

Escape the Spreading Fire

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
private static final int[][] DIRECTIONS = {{-1, 0}, {0, -1}, {1, 0}, {0, 1}};

public int maximumMinutes(int[][] grid) {
    int m = grid.length, n = grid[0].length;

    // personMinutes[i][j]: the earliest time you will reach the cell (i, j)
    int[][] personMinutes = new int[m][n];
    for (int i = 0; i < m; i++) {
        Arrays.fill(personMinutes[i], -1);
    }
    personMinutes[0][0] = 0;

    int minute = 0;
    int[] cell = {0, 0};
    Queue<int[]> q = new LinkedList<>();
    q.offer(cell);

    while (!q.isEmpty()) {
        minute++;
        for (int i = q.size(); i > 0; i--) {
            cell = q.poll();
            for (int[] d : DIRECTIONS) {
                int r = cell[0] + d[0], c = cell[1] + d[1];
                if (r >= 0 && r < m && c >= 0 && c < n && personMinutes[r][c] < 0 && grid[r][c] == 0) {
                    personMinutes[r][c] = minute;
                    q.offer(new int[]{r, c});
                }
            }
        }
    }

    // fireMinutes[i][j]: the earliest time the person will reach the cell (i, j)
    int[][] fireMinutes = new int[m][n];
    minute = 0;
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            fireMinutes[i][j] = -1;
            if (grid[i][j] == 1) {
                q.offer(new int[]{i, j});
                fireMinutes[i][j] = 0;
            }
        }
    }

    while (!q.isEmpty()) {
        minute++;
        for (int i = q.size(); i > 0; i--) {
            cell = q.poll();
            for (int[] d : DIRECTIONS) {
                int r = cell[0] + d[0], c = cell[1] + d[1];
                if (r >= 0 && r < m && c >= 0 && c < n && fireMinutes[r][c] < 0 && grid[r][c] == 0) {
                    fireMinutes[r][c] = minute;
                    q.offer(new int[]{r, c});
                }
            }
        }
    }

    // you can't reach the safehouse
    if (personMinutes[m - 1][n - 1] < 0) {
        return -1;
    }

    // fire can't spread to the safehouse
    if (fireMinutes[m - 1][n - 1] < 0) {
        return (int)1e9;
    }

    // the fire spreads to it earlier than you
    if (personMinutes[m - 1][n - 1] > fireMinutes[m - 1][n - 1]) {
        return -1;
    }

    // on a valid path from start to safehouse, diff = (fireMinutes - personMinutes) is non-increasing
    // suppose you and the fire meet at a cell (i, j), and diff == 2
    // it means you are ahead of the fire by 2 minutes.
    // from now on, the fire can conservatively follow your trace so the diff remains as 2.
    // there possibly exists a better strategy for the fire at drive the diff down even further.

    // diff at (m - 2, n - 1) > diff at safehouse means you and fire came from different directions
    // (otherwise the diff at this west neighbor would be == diff at safehouse)
    // same as the north neighbor.
    // in this case, you meet the fire right at the safehouse.
    //
    // otherwise, diff at west and north neighbors are the same as the safehouse,
    // which means you and fire meet right before the safehouse.
    // (the fire follows you all the way)
    // in this case, you need to wait one minute shorter
    int diff = fireMinutes[m - 1][n - 1] - personMinutes[m - 1][n - 1];
    return personMinutes[m - 2][n - 1] >= 0 && personMinutes[m - 1][n - 2] >= 0 &&
       (fireMinutes[m - 2][n - 1] - personMinutes[m - 2][n - 1] > diff ||
       fireMinutes[m - 1][n - 2] - personMinutes[m - 1][n - 2] > diff) ? diff : diff - 1;
}

Edge cases

Another solution is to compute fireMinutes, and binary searches the max wait time so that you can reach the safehouse.

+ DFS

Minimum Cost to Make at Least One Valid Path in a Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
// index = grid[i][j] - 1
private static final int[][] DIRECTIONS = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

public int minCost(int[][] grid) {
    int m = grid.length, n = grid[0].length;
    int[][] costs = new int[m][n];

    for (int i = 0; i < m; i++) {
        Arrays.fill(costs[i], -1);
    }

    Queue<int[]> q = new LinkedList<>();  // {r, c}
    int cost = 0;

    // finds all reachable cells
    dfs(grid, costs, 0, 0, cost, q);

    while (!q.isEmpty()) {
        cost++;
        for (int i = q.size(); i > 0; i--) {
            int[] cell = q.poll();
            int r = cell[0], c = cell[1];

            // modifies the sign to all possible directions
            for (int[] d : DIRECTIONS) {
                dfs(grid, costs, r + d[0], c + d[1], cost, q);
            }
        }
    }
    return costs[m - 1][n - 1];
}

// DFS finds all reachable cells.
// all sign modifications allowed with this cost have been completed in its preceding BFS,
// so no sign can be modified in DFS.
private void dfs(int[][] grid, int[][] costs, int r, int c, int cost, Queue<int[]> q) {
    int m = grid.length, n = grid[0].length;

    // costs[r][c] >= 0 means this cell has been visited with lower or equal cost 
    if (r < 0 || r == m || c < 0 || c == n || costs[r][c] >= 0) {
        return;
    }

    costs[r][c] = cost;

    // adds newly visited cell to the level
    q.offer(new int[]{r, c});

    // no sign modification is allowed, so just follow the sign
    int[] d = DIRECTIONS[grid[r][c] - 1];
    dfs(grid, costs, r + d[0], c + d[1], cost, q);
}

Bit Mask

Shortest Path Visiting All Nodes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public int shortestPathLength(int[][] graph) {
    int n = graph.length;
    Set<String> visited = new HashSet<>();

    // {label, mask}
    Queue<int[]> q = new LinkedList<>();
    for (int i = 0; i < n; i++) {
        q.offer(new int[]{i, 1 << i});
        visited.add(i + "#" + (1 << i));
    }

    int level = 0;
    while (!q.isEmpty()) {
        for (int i = q.size(); i > 0; i--) {
            int[] node = q.poll();
            if (node[1] == (1 << n) - 1) {
                return level;
            }

            for (int neighbor : graph[node[0]]) {
                int[] next = {neighbor, node[1] | (1 << neighbor)};
                if (visited.add(next[0] + "#" + next[1])) {
                    q.offer(next);
                }
            }
        }
        level++;
    }
    return level;
}
This post is licensed under CC BY 4.0 by the author.