Arrangement
Arrangement
1
2
3
4
5
6
7
8
public int[] constructArray(int n, int k) {
int[] list = new int[n];
// max(k) == n - 1
for (int i = 0, left = 1, right = n; left <= right; i++) {
list[i] = k > 1 ? (k-- % 2 == 0 ? right-- : left++) : left++;
}
return list;
}
1
2
3
4
5
n = 9, k = 8
left: 1 2 3 4 5
right: 9 8 7 6
diff: 8 7 6 5 4 3 2 1
1
2
3
4
5
n = 9, k = 5
left: 1 2 3 4 5 6 7
right: 9 8
diff: 8 7 6 5 1 1 1 1
Dearrangement
\[!n=(n-1)({!(n-1)}+{!(n-2)})\] \[!n=n!\sum _{i=0}^{n}{\frac {(-1)^{i}}{i!}}, \quad n\geq 0\] This post is licensed under CC BY 4.0 by the author.